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Managing Risk in Ethanol Processing Using Formula Pricing Contracts 

Manufacturers of ethanol face considerable pricing risk from both an input (corn and natural 

gas) and output (ethanol, distillers dried grains, and corn oil) in addition to the fluctuating value 

of the ethanol renewable identification numbers (D6 RINs) attached to each gallon of ethanol 

produced.  Additionally, ethanol plants face technical risks related to their physical plant 

extraction rates for ethanol, DDGs, and corn oil along with their efficiency in using natural gas 

(or an alternative heat source).  The purpose of this study is to examine the risk characteristics 

of a fixed margin, formula pricing contract applied to the ethanol industry using Monte Carlo 

simulation and sensitivity analysis.  The margin model is set up for a typical South Dakota dry 

mill plant that has corn oil extraction capabilities in addition to dry DDGs.  The results indicate 

that there are benefits to both the buyer and seller from utilizing the proposed contract.  Under 

the average pricing scenario, the buyer can expect to pay a marginally lower mean ethanol price 

with a slightly lower probability of paying a high price and a slightly higher probability of 

paying a low price when compared to paying the spot ethanol price at delivery.  At the mean, the 

buyer could feasibly save approximately 30 cents per gallon (on an average $1.43 delivery 

price) through perfect timing on setting the price components.  For the seller, the gain from the 

contract is primarily due to a substantial reduction in margin volatility and better 5% value-at-

risk (VaR) values when compared to the delivery benchmark under all three buyer pricing 

scenarios.  The ethanol seller can also achieve gains in margin through increased ethanol 

extraction efficiency with an approximate 2% gain in margin for each 1% increase in the 

extraction rate. 

Key Words: margin contracting, formula pricing, ethanol, Monte Carlo simulation 

 

Introduction 

Ethanol manufacturers confront substantial risk in the normal course of crushing including risks 

related to input prices (corn and natural gas), output prices (including ethanol, DDGs, and other 

residual by-products such as corn oil), in addition to D6 RIN (Renewable Identification 

Numbers) prices, and extraction rates for ethanol and by-products.  Risks attributed to these 

variables are substantive and are typically absorbed by the ethanol manufacturer.  While hedging 

mechanisms exist for some of these input and output prices, there is a notable amount of risk that 

is absorbed by the seller in terms of margin risk. 

Alternatives to conventional hedging strategies involve varying types of contracting.  One of 

these involves fixing each, or some, of the components of the underlying price independently 

(e.g., DDGs, ethanol, etc.); or contracting for the margin and fixing each of the elements of the 

ethanol price independently.  In processing industries, this is sometimes referred as ‘component’ 

or ‘formula’ pricing.  Simply, the ethanol price would be specified as a formula, whereby the 

buyer has the option to fix each element, however, the margin and extraction rate would be 

negotiated between the buyer and seller.  While formula, or, component, pricing may appear 

novel to this industry, the approach has been adopted in other agricultural processing industries.  

As examples, component pricing is used for most of the semolina sales to pasta manufacturers, 

between brewers and malting companies, and between flour millers and bakers, as well as with 
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some soybean and oilseed crushing companies for sales to their customers. These are all quite 

mature industries with larger and sophisticated principals and agents, making such contracting 

strategies readily implementable.  

The literature in this sector has evolved though it is somewhat limited.  Most of these studies 

investigate varying hedging strategies where by long or short positions in the processed product 

are hedged in futures contracts.  To our knowledge, there is limited, if any, studies that have 

sought to quantify risks associated with alternative contracting strategies, despite that they are 

fairly common in these sectors. The purpose of this study is to analyze the use of a component-

based, formula pricing strategy between ethanol manufacturers and buyers that is similar to those 

used in semolina and other processing industries.  It is highly relevant.  Ethanol, compared to the 

other agricultural processing industries, is relatively new, is high scale, and has substantial 

indigenous risk.  The buyers and sellers are large and otherwise would have sophisticated 

approaches to pricing and risk management.  There is substantial risk which can be partially 

absorbed through traditional mechanisms.  However, the ethanol seller absorbs a consequential 

amount of residual risk and may be compensated by a risk premium for doing so.  Component 

pricing, though not now used, is very relevant and would allow another way to mitigate risks, 

ultimately shifting a portion of the risk to the buyer. 

We develop a Monte Carlo model of a hypothetical ethanol dry mill plant located in South 

Dakota (due to price availability) who buys corn and energy in the form of natural gas to produce 

ethanol and related byproducts in form of dry distillers’ dried grains (DDGs) and corn oil.  It is 

implicitly assumed that the D6 renewable identification number (RIN) value is embedded into 

the price of the ethanol.  The proposed ethanol formula pricing equation is derived and simulated 

using a 72-day pricing window in which the buyer can choose to fix each of the price 

components (corn futures and basis, natural gas formula based upon daily Henry Hub prices, 

DDGs, corn oil, and D6 RINs).  The ethanol ‘crush’ margin is fixed in the contract along with 

the extraction rates for corn to ethanol, DDGs and corn oil; and the usage rate for natural gas per 

gallon of ethanol produced.  The simulation model examines both the statistical properties and 

the price sensitivities of the component-based formula price.  This provides a profile of the risks 

and returns of entering this type of contract from the buyer’s perspective. 

To examine the risk characteristics and sensitivities to the ethanol processor, the formula price is 

then plugged into the plant’s actual ‘crush’ margin, which is simulated, and the statistical and 

sensitivity properties derived.  The seller’s crush margin implicitly assumes that the seller will 

buy corn futures at the same time the buyer fixes the corn futures component and buys natural 

gas futures when the natural gas formula price (Henry Hub based due to lack of daily local price 

series) is fixed by the buyer.  The D6 RIN value is fixed by the buyer in the formula price so the 

ethanol processor is assumed to absorb the price risks related to corn and natural gas basis (fixed 

at $2.00 in the formula), local DDG cash price, local corn oil price, and the actual 

extraction/usage rates versus the contracted rates. 

The simulation results will be examined under three different assumptions regarding the buyer’s 

skill or luck in fixing the pricing components.  An ‘optimal’ scenario assumes that the buyer 

fixes the margin output prices (DDGs, corn oil, and RINs) at their maximums and the input 

prices (corn futures, corn basis, and natural gas formula) at their minimums in order to achieve 

the lowest formula price for ethanol over the 72-day window.  A ‘worst’ scenario assumes the 
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buyer fixes the margin output prices at their minimums and the input prices at their maximums 

which results in the highest formula price for the 72-day window.  An ‘average’ scenario 

assumes that all of the price components were fixed at their average daily values during the 

pricing window.  In addition, a ‘benchmark’ value is calculated for the ethanol price and actual 

‘crush’ margin that would occur at contract maturity in the absence of the component-based, 

formula price contract.  The contract prices / margins are compared to their benchmark values to 

ascertain their potential utility to both the buyer and seller. 

Related Studies and Background 

Processor Operations and Risk 

Functions of processors differ from other hedgers, notably growers and traders.  Processors buy 

inputs, transform the inputs and sell products.  Typically, they would have one or more inputs 

and one or more outputs, and, importantly, active futures markets typically function in one or a 

couple of the prices which are at risk.  As a result, there are other sources of risk which are not 

easily hedgeable and as a result, typically, the processor absorbs this risk. 

A number of authors provide a description of the primary functions of processors.  Hieronymus 

(1971) describes the flour milling industry as well as the soybean crushing industry, as does the 

Chicago Mercantile Exchange (2015).  The crush spread is used by crushers to lock in margins. 

It is important that the soybean crush, normally refers to a futures crush.  These are easily traded, 

and highly transparent and liquid.  The cash crush differs in that basis values for each of the 

soybean, oil and meal are included in addition to a ‘kicker’ for non-reported or measurable 

attributes (e.g., protein). The focus of these are on ultimately how these firms hedge in futures.  

Earlier studies described traditional hedging mechanisms in soybean processing (Andreas 1978; 

Peck and Nahmias 1989; Chicago Board of Trade 2006; Hieronymus 1971; Kolb and Overdahl 

2007; Williams 1978) and flour milling (Bean 1978; English 1978; Lake 1978; Peck and Besant 

1985) as well as later studies by Wilson and Preszler (1992 and 1993).  These traditional 

approaches or models are of operational hedging (Working 1962).  Inputs are bought or outputs 

sold, and the net position is hedged using a common transformation rate. 

For ethanol manufacturers, corn is the primary input, in addition to natural gas, and the outputs 

are ethanol, corn oil, distillers’ dried grains (DDGs) and RINs.  Corn, ethanol, and natural gas 

are traded on futures markets and provide a mechanism to reduce exposure to risk on those 

components of the ethanol price.  But the other components are important and result in risk that 

is not easily mitigate.  As a result, managing risk in ethanol manufacturing is substantial. 

Risk Management Studies on Agricultural Processors 

There is a fairly extensive literature using analytical models to determine optimal hedge ratios 

for processors of agriculture commodities.  These studies use varying forms of portfolio models 

to determine optimal hedge ratios for the hedgeable commodities.  The focus on risk using 

hedging as a strategy is as if the only strategy pursued is that of hedging in futures.  

These models have been applied in the bakery industry (Wilson, Nganje and Wagner 2006), 

soybean crushing industry (Dahlgran 2005), canola and western barley industry (Mann 2010), 
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and cross-hedging of DDGs (Brinker et al. 2009).  Others use varying forms of expanded mean-

variance (EV) analysis including Gloy and Baker (2001), Sanders and Manfredo (2002), Pritchett 

et al. (2004), and Wilson, Nganje and Hawes (2007).  Wilson et al. (2006) derived hedging 

strategies for food processors and illustrated that the optimal hedge ratios (HRs) were highly 

dependent on a complicated set of interrelations and duration.  Bullock, Wilson and Dahl (2007) 

analyzed the efficiency of using futures and/or options as a hedge for processors with mean-

variance preferences and correlated input-output prices using an approach originally developed 

by Bullock and Hayes (1992) where the analytical moments (mean and VCV) matrix were 

derived for truncated and/or non-smooth functions of a random variable (as is the case with 

options). 

Wilson (1984) did one of the earlier studies on cross-hedging in the wheat sector.  Chen et al. 

(2016) evaluated hedging for wheat flour millers, using EV models with copula distributions 

which are more flexible. He analyzed three scenarios for a wheat flour milling firm, depending if 

they were long or short cash wheat or flour. Their measure of risk was the value-at-risk (VaR) 

and derived the hedge ratio (HR) for a mean / value-at-risk (E-VaR) modeling approach which is 

becoming increasingly more adopted in these processing industries. Results indicated the HRs 

were typically less than one in value.  The hedge ratios assuming copula distributions were in 

most cases less than the non-copula specifications, suggesting that models without copula may 

overstate risk.  

There have also been a number of studies to determine optimal hedging strategies for soybean 

crushers.  Simon (1999) found the crush spread reverts to its 5-day moving average and proposed 

trading rules to exploit this relationship.  Others explored varying trading strategies using the 

soybean crush (Rechner and Poitras 1993; Johnson et al. 1991).  Mitchell (2010) showed the 

profitable trades were shorter than losing trades. There are a number of other studies that discuss 

optimal hedging strategies for soybean processors (Farrell and Blas 2010; Lapan and Moschini 

1994; Lence and Hayes 1994) using EV, expected utility (EU), and other modeling approaches.   

More recent studies have analyzed varying aspects of canola crushing and contracting (Wilson 

and Dahl 2014).  They analyzed preplant contracts in terms of risk and return for growers and 

processors.  Their goal was to compare fixed price, variety specific and act-of-God provisions, in 

addition to an oil-premium contract. 

Studies on Risk Management in Ethanol 

Ethanol is a newer industry than others discussed above.  James (2008) provides a review of 

energy trading.  Dahlgran (2009) evaluated the effectiveness of hedging ethanol inventories and 

corn crush.  Chang et al. (2012) explored asymmetric adjustments for spot and futures prices in 

numerous commodities and the ethanol futures price.  Results indicate the spread adjustment 

with corn has the strongest long- run widening adjustment. 

One of the few studies on risk management in ethanol (Awudu, Wilson and Dahl 2016) 

determined optimal hedge ratios and markets for different instruments and distributions.  That 

study used EV models and VaR to evaluate optimal hedging strategies and derive measures of 

risk. They used more flexible distributions and quantified risk under different hedging strategies. 

The model was specified with copula dependencies which are more flexible when dealing with 

asymmetric distributions and correlation structure.   They evaluated optimal hedging strategies 
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for several scenarios.  These include strategies for an ethanol processor purchasing corn and 

selling ethanol, corn oil, DDGs, and RINs.  The optimal hedge ratios were derived using an E-

VaR specification. This study assumed that the only strategy used by an agricultural processor 

was hedging and/or cross-hedging in futures.  Hence, the goal was to use varying forms of the 

EV model (including EV, E-VaR, EV with copula, and E-VaR with copula approaches) and, as 

expected, the derived hedge ratios varied substantially by approach.  The results indicated the 

best strategy would be short cash corn.  The E-VaR with copula had the greatest utility indicating 

that other specifications misstate risks. 

Component Pricing, Processor Hedging, and Risk 

It is important that commodity processors pursue a number of strategies for risk management.  

Hedging is one, but it only reduces the futures price risk, which is only one element of risk 

confronting a firm.  Hedging is attractive to hedge inventories (presumably when basis is weak 

such as arbitrage hedging), or to offset forward product sales, or in general to offset risks of a net 

cash position.  For these reasons, hedging is common. However, hedging in futures is only one of 

a number of risk mitigation strategies.  One alternative is component-based formula pricing, 

which is described in this section, and developed further in the following section.    

The remainder of this section is based on our working with these industries in the development 

and application of processing contracts.  Component-based formula pricing is an important 

alternative: 1) as industries mature, 2) when buyers are sophisticated (i.e., already active in 

hedging component inputs), 3) if the buyer is concerned about margins and extraction rates, and 

4) when buyers want to buy further forward than actively traded instruments allow.  Indeed, in 

the flour milling business, millfeed and other components are typically only tradeable 2-3 

months forward, yet some buyers seek coverage 9-12 months forward and millers typically want 

to lock-in capacity utilization.  In these cases, component-based formula pricing is attractive.   

Component-based formula pricing has evolved to be an important alternative that is used, 

particularly by large bakers (in addition to being used in semolina flour processing and malting 

as indicated above).  Traditionally a miller will buy wheat, hedge it and subsequently sell flour, 

millfeeds, and other byproducts; or they may sell flour, buy futures, and buy cash and sell 

millfeeds over time and as logistically attractive.  Traditional hedging would have the miller 

taking offsetting positions (long or short) in futures, depending on their net cash position.  

However, the miller would be exposed to other components of price risk not mitigated by the 

wheat futures position.  These other sources of risk or components of price are the wheat basis, 

millfeed values, extraction rates, and shipping costs.  The residual of these would be the margin 

which would be random due to the variability of these other components.   

Increasingly, the milling industry is selling to large corporate bakers.  Typically, these firms are 

already hedging wheat prices, i.e., the wheat component of the flour price, but, are exposed to 

risk of the other components.  While cross-hedging may be possible, these strategies are mostly 

ineffective. Hence, the seller is exposed to a larger component of risk due to these other 

components of risk which are not hedgeable; and, the buyer (i.e. baker) is similarly exposed to 

these risks.  Component-based formula pricing is also common in markets which are not very 

transparent, or liquid, including durum, malting barley, etc., for the reasons cited above. 
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‘Component pricing’ would be executed in a contract that would specify a formula deriving the 

final price of flour, and how it relates to the components.  The contract fixes margins, and 

extraction rates. All the other components are to be determined, normally, or, always at the 

option of the buyer.  The mechanism on how this works varies by components. Futures are easy 

as both the buyers and sellers know the futures, so, at any time, they could concur on a futures 

price.  At any time, the buyer would indicate the price level to be fixed, at which time 1) that 

component of price would be fixed; 2) the miller would either offset by buying futures if they are 

short cash wheat; or 3) selling futures if long cash wheat. There are no futures for the other 

elements (i.e., wheat basis, millfeeds), so the seller who knows these values (at which trades 

could occur), would routinely provide information to the buyer at which values can be fixed.  It 

is important that the seller provides values for these components that are tradable or executable, 

else there would be a deviation in transaction prices which would exacerbate the distribution of 

risk.   At any time, or with negotiated temporal limits, the buyer would indicate or accept a price 

for that component.  The components of price may or may not, but typically would not, be fixed 

concurrently.   The process of using a component-based formula pricing strategy reduces the risk 

for the seller (miller) and locks in a portion of forward capacity for processing.  Ultimately, in 

some cases this would be referred as strategic purchasing.  

In component-based formula pricing, the only risky variables are the extraction rate, or, ea* - ec 

where ea* is the realized (or actual) extraction rate, and ec is the contracted extraction rate.  

Ultimately, extraction rates are negotiable, but are fixed or non-random in the contract.  The 

problem with extraction rates is the miller wanting to have autonomy on this component, and, 

due to difficulties of monitoring these values.   Under component-based formula pricing, the 

components of price are to be determined at the option of the buyer, and are presumably 

(normally) offset concurrently by the buyer.  Hence, from the buyer perspective, these are not 

risky.   

The impact of component pricing for the mill is that risk is reduced substantially.  Ultimately the 

only risks are execution risks and the difference between actual and contracted extraction rates.  

For these reasons, being there is less risk, the miller may be willing to negotiate a lower margin.  

The risk to the buyer depends on how they execute the trade.  If they actively hedge and fix 

inputs strategically, their cost and risk should be reduced. 

The problem for ethanol is more complicated for a number of reasons.  Most important are that 

there are more components to the ethanol price including, prices for corn (futures and basis), 

DDGs, RINs, corn oil, and natural gas.  However, we are of the view that at this moment it is 

probably not practical in pricing ethanol that all of the components of price could be treated as 

above.  Instead, only the more liquid components are included in the formulae pricing below.      

Conceptual Model 

Consider a normal dry-mill ethanol plant with the ability to produce dry distiller’s grains (DDGs) 

and corn oil as by-products of producing ethanol.  The operating margin (Mt) for a particular 

plant in time period t can be represented as: 

 ( ) ,E DDG CO RIN C NG

t t t t t t t t tM P P P P P P        β   (1) 
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where 𝑃𝑡
𝑖 is the particular output or input price in period t with the i superscript equal to E for 

ethanol, DDG for local distiller’s dried grains, CO for local corn oil, RIN for D6 Renewable 

Identification Numbers, C for local corn, and NG for local natural gas.  The error term (𝜀) 

represents the other plant operating cost factors (direct and indirect) not accounted for in the 

equation.  The vector 𝛽 represents the technical operating characteristics of the particular plant in 

question for converting the corn and natural gas inputs into ethanol and byproducts (DDG, corn 

oil, and RINs).  Note that the corn and natural gas input prices can be further broken down as: 

 
  ,

,

C C C

t t t

NG NG NG

t t t

P F B

P F B

 

 
  (2) 

where F is the futures price and B is the basis component of the local cash price. 

The fixed-margin ethanol formula pricing contract for a terminal delivery time period T is 

structured as follows: 

 * * * * * *[ ( ) ( )],E DDG CO RIN C C NG NG

T T TM P P P P F B F B        β   (3) 

where the bar accent indicates the value is fixed in the contract and the star subscript indicates 

that the value can be fixed by the ethanol buyer at the current market at any time between the 

current time period (t) and the contract maturity date (T).  Note that the contract assumes the 

natural gas price is a fixed basis formula price agreed to by the buyer and seller. 

By rearranging the terms in equation 3, the contract ethanol formula price can be represented as: 

 * * * * * *[ ( ) ( )].E DDG CO RIN C C NG NG

T T TP M P P P F B F B        β   (4) 

Note that the formula price in equation 4 has a positive first derivative with the buyer-fixed input 

prices and negative first derivatives with the buyer-fixed byproduct and RIN prices.  The buyer’s 

objective is to minimize the ethanol formula price by maximizing the fixed byproduct and RIN 

prices while minimizing the fixed input prices. 

For the ethanol plant, their actual margin at contract maturity (
T

M ) is determined by substituting 

the component-based ethanol formula price in equation 4 for the ethanol price in equation 1 and 

setting the time to maturity T.  This results in the following equation: 

 * * *

* * *

...

   ( ) ( ) ( ) ( ) .

DDG DDG DDG DDG CO CO CO CO RIN RIN

T T T T T T T T T

C C C C C C NG NG NG NG NG NG

T T T T T T T T T T

M M P P P P P P

F B F B F B F B

   

    

       

       
  (5) 

The ethanol plant margin risk is primarily based upon differences in technical efficiency 

(contract versus actual plant), or simply contracted versus actual extraction rates; and differences 

between the price set by the buyer and the actual prices paid and received for the inputs and 

byproducts respectively.  Normally, these would be the same as described above; though it is 

possible for them to differ if there is execution risk.   
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Note that, by definition, the RIN technical factor is equal to one in both the contract and actual; 

therefore, the RIN risk is completely removed from the seller’s margin equation since 

*

RIN RIN

TP P  by definition in the contract.   The ethanol plant can eliminate the risk of the futures 

component price differences for both corn (
*

C C

TF F  ) and natural gas (
*

NG NG

TF F  ) by buying 

the respective futures at the same time that the buyer fixes those prices.  This strategy will be 

implicitly assumed in the simulation modeling of this study.  Therefore, the reduced seller’s 

margin equation can be represented as: 

 
* *

*

...

            .

DDG DDG DDG DDG CO CO CO CO

T T T T T T T T

C C C C NG NG NG NG

T T T T T T T T

M M P P P P

B B B B

   

    

     

   
  (6) 

Therefore, the risks to the seller’s margin are equivalent to the interactions between the technical 

extraction rates (contract and actual) with the byproduct prices (DDGs and corn oil) and the 

input basis values (corn and natural gas). 

Methodology 

To evaluate the risk profile of the proposed margin formula price contract, a Monte Carlo 

simulation model was set up using the @Risk™ application by Palisade Software2 which is an 

add-in to Microsoft Excel.  Two simulation models were set up: (1) a model of the contracted 

ethanol formula price that would be paid by the buyer to the seller (equation 4), and (2) the 

seller’s (ethanol producer) actual margin using the component-based formula price contract 

(equation 6).  The model was set up to reflect a typical South Dakota dry-mill ethanol plant 

producing dry DDGs and corn oil as the primary by-products and using natural gas at its primary 

heating source.  The contract parameters used in the simulation are given in Table 1.  The 

contracted margin is fixed at the calculated ‘crush’ margin at the initiation of the contract 

(5/8/2018). 

Table 1. Parameters of Ethanol Margin Contract 

 

The buyer has the option of setting the corn futures (CME September 2018), local corn futures 

basis, distillers’ dried grains (DDG) local price, corn oil local price, D6 RIN price, and a natural 

gas formula price which is set at $2.00 over the daily quoted Henry Hub price (in $/MMBtu).  

The price can be fixed by the buyer at the end of any business day between 5/8/2018 and 

                                                 
2 www.palisade.com 

Factor Value Units

Today's Date 5/8/2018

Contract Delivery Date 8/15/2018

Business Days Until Expiry 72

Ethanol Technical Factor 2.80 gallons per bushel of corn

DDGs Technical Factor 17.25 pounds per bushel of corn

Corn Oil Technial Factor 1.50 pounds per bushel of corn

Contract Fixed Margin $0.543 per gallon of ethanol
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8/15/2018.  Since the buyer can fix the price at the close of any day during the 72-business day 

window, the entire daily time path of the pricing variables needs to be simulated.  To project the 

daily time path of the price variables, daily values of the following price series (Table 2) were 

downloaded from Bloomberg for the relevant cash price series.  Daily closing futures prices 

(ZCU18) were downloaded from DTN ProphetX and used to calculate the daily basis values 

using the daily SD cash price series.  Daily Henry Hub natural gas prices were obtained from the 

Federal Reserve Bank of St. Louis’ FRED online database.  The data obtained covered the daily 

(business day) range from 8/16/2017 through 5/8/2018. 

Table 2. Price Series Downloaded from Bloomberg 

 

To model and simulate the future time series behavior of the futures and cash price series, the 

@Risk time series fitting procedure was used to fit the historical data to the best fitting time 

series model (using the Akaike Information Criterion).  To remove any bias in the model results 

to the prevailing trend in the data, the intercepts in all of the models were constrained to zero.  

Table 3 shows the best fitting model parameters for all of the daily price series.  The price series 

were log-differenced to prevent negative forecasted values while the corn basis, which can be 

negative or positive, was just first differenced.  Only the Box-Jenkins family of models (AR1, 

AR2, MA1, MA2, ARMA11) were included in the candidate model set.  The AIC fitting 

criterion chose the MA1 model for all of the price series which is consistent with a mean-

reverting stochastic process. 

Table 3. @Risk Best Fitting Time Series Models Based on AIC Criterion 

 

To account for potential correlations across the price series, the @Risk copula fit procedure was 

applied to the transformed (log- and first-differenced) price history.  The best fitting copula, 

based upon the AIC criterion, was the Gaussian copula with a rank order correlation matrix 

shown in Table 4. 

Series Description Bloomberg Key

Corn Cash Price South Dakota Daily Ethanol Plant Corn Bid ETDKNO2C Index

Ethanol South Dakota Daily Ethanol Plant Ethanol FOB ETDKETHP Index

Dry Distillers Grains South Dakota Daily Ethanol Plant Dry Distillers ETDKDDGP Index

Corn Oil South Dakota Daily Ethanol Plant Corn Oil ETDICOSD Index

D6 RINS Daily D6 RIN Price RIN6Y 18 STRF Index

Series Transform Intercept (Trend) MA(1) Resid St Dev

Corn Futures Price (ZCU18) Log Difference 0 -0.0570 0.0070

Corn Basis Difference 0 -0.6952 0.0355

SD DDG Price Log Difference 0 -0.1371 0.0098

SD Corn Oil Price Log Difference 0 0.0000 0.0058

NG Formula Price Log Difference 0 0.2761 0.0494

D6 RIN Price Log Difference 0 0.1209 0.0505

SD Ethanol Price Log Difference 0 -0.0185 0.0111
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Table 4. Rank-Order Correlation (Spearman) Matrix for Gaussian Copula Fit 

 

Since the ethanol margin formula pricing contract essentially transfers all of the pricing decisions 

to the buyer, the final formula price reflects the ability of the buyer to optimally lock in all of the 

pricing components.  Therefore, the simulation calculated three formula prices depending upon 

the buyer’s ability to optimally time his/her pricing decisions:  

1) an optimal scenario where the buyer fixes the input prices (corn futures, corn basis, 

natural gas) at their minimum values and the output prices (DDG, corn oil, RINs) at their 

maximum values over the 72-day pricing window which results in the lowest possible 

formula price, 

2) an average scenario where the buyer fixes all of the prices at their average values over 

the 72-day pricing window, and 

3) a worst scenario where the buyer fixes the input prices (corn futures, corn basis, natural 

gas) at the maximum values and the output prices (DDG, corn oil, RINs) at the minimum 

values over the 72-day pricing window resulting in the highest possible formula price. 

The three scenarios place bounds upon the ability of the buyer to optimally time his/her pricing 

decisions within the contract.  The first scenario represents the best that the buyer could 

accomplish via the timing of pricing while the third scenario represents the worst that the buyer 

could do via price timing.  The second scenario would represent the price the buyer could expect 

if their timing decisions were essentially random or average in nature.  A buyer with good timing 

skills could expect to achieve a price between the optimal and average scenarios while a buyer 

with poor timing skills could expect to achieve a price between the average and worst-case 

scenario. 

From the seller’s (ethanol producer) perspective, the risks of the contract are the deviation 

between the contracted margin and the actual plant operating margin using the ethanol formula 

price.  This risk is directly related to three categories of factors: 

1) the deviation between the contracted technical plant factors (extraction and usage rates) 

and the actual realized extraction and usage rates, 

2) the deviation between the actual price received and the buyer fixed price for the 

byproducts (DDGs and corn oil), and 

3) the deviation between the basis at maturity, and the buyer fixed basis for corn or the 

contract fixed basis ($2.00 in the simulation model) for natural gas. 

Corn Futures Dry DDG Corn Oil RINS Corn Basis Ethanol Price NG Formula

Corn Futures 1.000

Dry DDG -0.193 1.000

Corn Oil -0.135 0.129 1.000

RINS 0.005 0.147 -0.075 1.000

Corn Basis 0.703 -0.168 -0.203 0.047 1.000

Ethanol Price -0.214 0.034 0.601 -0.140 -0.287 1.000

NG Formula 0.056 0.006 0.101 0.166 0.081 0.116 1.000
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With regards to the first category of factors, if the plant actually operates in a more efficient 

manner (higher extraction rates for ethanol, DDGs, and corn oil; or lower usage rate for natural 

gas), then the actual margin will be higher than the contracted value holding all other factors 

constant.  With regards to the byproduct prices for DDGs and corn oil, the actual margin will be 

higher if the actual byproduct prices exceed the buyer-fixed values.  With regards to the input 

basis values for corn and natural gas, the actual margin will be higher if the actual basis at 

maturity is weaker (lower) than the buyer-fixed basis in the contract. 

In the Monte Carlo model, it is assumed that the seller buys corn and natural gas (Henry Hub) 

futures at the same time the buyer fixes those price components, thus effectively eliminating the 

futures component of price risk for both inputs.  Therefore, the seller still has to absorb the basis 

risk in both markets.  The natural gas formula price has a fixed basis of $2.00 per MMBtu; 

therefore, the seller absorbs the risk of the actual basis deviating from this contracted value.  

Likewise, it is assumed that effective hedging markets do not exist for the byproduct markets, so 

the seller absorbs the full price risk of these components. 

Table 5. Distribution Assumptions for Technical Factors and NG Basis 

 

Table 5 shows the additional distributional assumptions for the seller’s margin model.  It is 

assumed that the seller will receive the time series simulated byproduct prices and corn basis on 

the terminal date (day 72).  The minimum and maximum parameters for the actual technical 

parameters represent a 5% deviation (above and below) from the contracted values.  The natural 

gas basis represents the mean and standard deviation of the historical spread between the 

monthly average South Dakota industrial user price (as reported by the Energy Information 

Agency of the Department of Energy) and the Henry Hub spot price (as reported by the Federal 

Reserve Bank of St. Louis FRED online database) over the previous two years. 

Monte Carlo Simulation Results 

To examine and rank the risk factors impacting both the ethanol formula price and seller margin, 

the Monte Carlo simulation model was run for 5,000 iterations with the formula price and seller 

margin values for the optimal, average, and worst cash buyer scenarios tracked as outputs.  For 

benchmarking purposes, the simulated ethanol delivery price and seller margin at delivery (day 

72) were also tracked.  Additionally, sensitivity analysis was conducted on the simulation results 

with the model inputs ranked based upon their percent contribution to the variance of the tracked 

output variable. 

Ethanol Formula Price Results 

Figure 1 shows the formula price distribution for the average price scenario (solid red) with the 

benchmark terminal delivery ethanol price (blue dots) overlaid on top.  The mean price under 

Variable Distribution

Actual Ethanol Extraction Rate Uniform(2.66,2.94)

Actual DDGS Extraction Rate Uniform(16.39,18.11)

Actual Corn Oil Extraction Rate Uniform(1.43,1.58)

Natural Gas Basis Normal(2.02,0.40)
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this scenario ($1.427 / gallon) is approximately 1 cent per gallon lower than the mean benchmark 

price ($1.438 / gallon).  However, a two-sample one-tailed t-test [Ho: μ(formula) < 

μ(benchmark)] produced a t-statistic of -4.15 which has a p-value of less than 0.0001 – an 

indication that the mean formula price is significantly lower than the mean benchmark price at 

delivery under the average pricing scenario. 

In terms of variability, the standard deviations are almost equal (12.6 versus 13.3 cents per 

gallon).  Where the price distributions seem to differ most significantly is in the tails.  The 

probability of a formula price below $1.20 a gallon is slightly higher (4.1%) for the formula price 

when compared to the benchmark (2.6%).  Likewise, the probability of a higher price (greater 

than $1.60 a gallon) is higher (11.4%) for the benchmark when compared to the formula price.  

A two-sample one-tailed F-test [Ho: σ2(formula) < σ2(benchmark)] produced an F-statistic of 

0.8915 with a p-value less than 0.0001 – an indication that the difference in variability is 

statistically significant. 

When examining the spread between the formula price and the benchmark price, pricing under 

the formula saved the buyer an average of approximately 1 cent per gallon with a 90 percent 

confidence interval between an extra cost of 32.8 cents per gallon and a savings of 28.3 cents per 

gallon.  Therefore, the buyer with average pricing skills could expect to just about break even on 

the formula pricing contract when compared to just waiting to price at delivery.  Therefore, the 

benefits of the formula pricing contract would primarily benefit the seller as described below 

(which is the intent of component pricing).  In addition, it would benefit primarily buyers with 

superior (better than average) pricing skills while those with inferior skills are likely to do worse. 

 

Figure 1. Formula Price Simulation Results from Average Scenario 

Summary statistics for the formula price scenarios and benchmark delivery price are shown in 

Table 6.  The results show that for the optimal timed buyer, the average price is approximately 
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$1.104 per gallon, a savings of over 30 cents per gallon relative to the benchmark price.  For the 

worst timed buyer, the average price is approximately $1.7375 per gallon which is slightly over 

30 cents per gallon higher than the benchmark.  So, at the mean value, the price timing skill of 

the buyer can save or lose up to 30 cents per gallon under this particular simulation scenario. 

Table 6. Summary Simulation Statistics for Formula Prices and Benchmark Delivery Price 

 

The sensitivity tornado for the average price scenario is shown in Figure 2.  Almost half (48.9%) 

of the variability in the formula price is due to fluctuations in the average RIN price.  Almost a 

third of the variability (28.6%) is due to fluctuations in the corn futures price while a little less 

than one-fifth (17.6%) of the variability is explained by fluctuations in the natural gas formula 

price.  The remaining prices (local DDG’s, corn basis, and corn oil) make up less than 5% of the 

formula price variability. 

 

Figure 2. Formula Price Sensitivity Tornado for Average Scenario (% Contribution to Variance) 

The sensitivity results for all of the formula pricing scenarios is shown in Table 7.  For the 

optimal pricing scenario, the same ranking holds when compared to the average scenario.  The 

main difference is the higher proportion of variance explained by the optimal RIN price (76.9% 

versus 46.8%) with all of the other variables shifted lower.  In the worst scenario, the RIN price 

Optimal Scenario Average Scenario Worst Scenario

Average 1.1039$                     1.4268$                     1.7375$                     1.4376$                     

Standard Deviation 0.1770$                     0.1257$                     0.1297$                     0.1331$                     

5th Percentile 0.7901$                     1.2096$                     1.5600$                     1.2351$                     

95th Percentile 1.3155$                     1.6229$                     1.9683$                     1.6660$                     

Formula Pricing Contract Scenarios (Buyer's Perspective) Benchmark 

Delivery PriceSimulation Statistic
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falls to 3rd in the ranking while the natural gas formula (46.3%) and corn futures (28.0%) prices 

occupy the top two slots. 

Table 7. Sensitivity Results for All Formula Pricing Scenarios (% Contribution to Variance in 

Parentheses) 

 

Overall, the simulation sensitivity results indicate that most of the variability (risk) present in the 

ethanol formula price contract is primarily concentrated in the two input prices (corn futures and 

natural gas) and the RIN price.  Two of these components are directly hedgeable in the 

commodity futures and option markets (corn and natural gas) which cover almost half (48 – 

49%) of the risk under the average and worst pricing scenarios.  There is no liquid hedging 

mechanism for D6 RIN prices; therefore, if this is a feature of the margin contract, the buyer 

would absorb all of the risk / opportunity of the fluctuating RIN price. 

Ethanol Plant Margin Results 

A graphical summary of the simulation results for the ethanol plant margin under the average 

pricing scenario is shown in Figure 3 (along with comparison to benchmark margin at contract 

maturity).  Under the average pricing scenario, the ethanol seller can expect to earn a slightly 

lower average margin (54.2 cents / gallon) when compared to benchmark delivery value (56.4 

cents / gallon).  A two-sample one-tailed t-test [Ho: μ(formula) < μ(benchmark)] resulted in a t-

statistic of -5.64 which has a p-value of less than 0.001 – an indication that the difference in 

means is statistically significant.   

However, in exchange for the slightly lower average margin, the seller gains a substantial 

reduction in margin variability as the standard deviation of the margin is significantly lower (5.0 

versus 26.8 cents per gallon) for the formula price margin versus the benchmark.  A one-tailed F-

test [Ho: σ2(formula) < σ2(benchmark)] of 0.0352 had a p-value of less than 0.0001 – an 

indication of a statistically significant difference in variability between the two simulation 

samples.  This illustrates the major purpose of component pricing, that being to reduce risk to the 

sellers.  Here, it is reduced substantially through the hedging of the two components, corn and 

natural gas futures along with fixing the RIN value in the margin contract. 

Optimal Scenario Average Scenario Worst Scenario

#1 RIN Price (80.2%) RIN Price (48.9%) Nat Gas Formula Price (47.7%)

#2 Corn Futures Price (13.9%) Corn Futures Price (28.6%) Corn Futures Price (28.2%)

#3 Nat Gas Formula Price (2.8%) Nat Gas Formula Price (17.6%) RIN Price (19.5%)

#4 DDG Price (2.0%) DDG Price (3.0%) DDG Price (2.6%)

#5 Corn Basis (0.9%) Corn Basis (1.4%) Corn Basis (1.7%)

#6 Corn Oil Price (0.3%) Corn Oil Price (0.4%) Corn Oil Price (0.3%)

Rank

Formula Pricing Contract Scenarios (Buyer's Perspective)
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Figure 3. Ethanol Margin Simulation Results from Average Scenario 

A summary of the sample statistics for all of the formula pricing scenarios and the benchmark is 

contained in Table 8.  The final row of the table contains the simulated probability that a 

negative plant margin would occur.  Under all of the formula pricing scenarios, the probability of 

a negative margin is effectively nil while there is a 1.3% probability of a negative margin under 

the benchmark.  Also, note that the 5% VaR value under the optimal (buyer) pricing scenario of 

38.1 cents per gallon is still substantially and materially higher than the value under the 

benchmark (14.6 cents).  Therefore, the benefits of the contract to the seller for margin risk 

management entail essentially risking a dime at the mean (46.6 versus 56.3 cents per gallon) in 

exchange for a 23.5 cent gain in 5% VaR under even the highly unlikely optimal (buyer) pricing 

scenario. 

Table 8. Ethanol Margin Simulation Results for All Scenarios and Benchmark 

 

The sensitivity tornado graph for the net ethanol plan margin under the average pricing scenario 

is contained in Figure 4.  The margin between the RIN price set by the buyer and the final 

delivery RIN price is the dominant contributor to the variance of the plant margin under this 

scenario (just over 80% of the explained variance).  Also, of significance are the plant efficiency 

Optimal Scenario Average Scenario Worst Scenario

Average 0.4663$                     0.5421$                     0.6159$                     0.5638$                     

Standard Deviation 0.0488$                     0.0503$                     0.0536$                     0.2680$                     

5th Percentile 0.3810$                     0.4596$                     0.5295$                     0.1461$                     

95th Percentile 0.5425$                     0.6236$                     0.7060$                     1.0071$                     

Odds | Negative Margin 0.0% 0.0% 0.0% 1.3%

Simulation Statistic

Formula Pricing Contract Scenarios (Buyer's Perspective) Benchmark 

Delivery Margin



16 

 

in ethanol extraction (actual rate versus contract rate) and changes in the corn basis at delivery.  

An examination of the sensitivities under the optimal and worst buyer pricing scenarios show an 

identical ranking in these top three factors with slight differences in the percentage shares. 

 

Figure 4. Sensitivity Tornado for Ethanol Margin under Average Pricing Scenario (% 

Contribution to Variance) 

Overall, these sensitivity results indicate that, from the perspective of the ethanol plant, the 

primary remaining risk in the margin contract after accounting for hedging out the corn and 

natural gas futures price risk is mostly attributed to the variability in the ethanol extraction rate 

(36.6%) followed by the corn basis at delivery (20.0%), and the DDG price at delivery (12.8%).  

For the ethanol extraction rate, the sensitivity analysis on the mean margin (average scenario) 

indicates that, for a 5% variation above and below the contracted rate 2.8 gallons per bushel 

(minimum of 2.66 and maximum of 2.94), the mean net ethanol margin varies between 49.2 to 

58.6 cents on a baseline margin of 54.2 cents per gallon.  So, the potential losses / gains on the 

margin range from -5.0 to +4.4 cents per gallon based upon a 5% variability in ethanol extraction 

efficiency.  So, the results indicate that any percent gain or loss in ethanol processing efficiency 

would likely translate into double that percentage impact upon the margin. 
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Table 9. Ethanol Margin Sensitivity Results for the Three Buyer Scenarios (% contribution to variance) 

 

The sensitivity results for all three buyer pricing scenarios are summarized in Table 9.  The 

ethanol extraction rate is the top factor across all three scenarios accounting for approximately 

one-third of the variability in the seller’s margin.  While the composition of the top six factors is 

the same across all three buyer pricing scenarios, the rankings shift slightly for the 2, 3, 4, and 5 

spots although the top three remain ethanol extraction rate, corn basis at delivery, and DDG price 

at delivery.  This indicates that there is a strong incentive for tools to manage corn basis and 

DDG price risk in order to further reduce the variability of the plant margin. 

Buying corn on either a fixed price or a basis contract could be used to manage the corn basis 

risk component.  For DDGs, the potential mechanisms for managing price risk include forward 

sales contracts (to feedlots), an over-the-counter (OTC) derivative contract, or the use of a cross-

hedge using corn and/or soybean meal futures.  Note, however, that the timing of placing these 

positions (relative to the buyer’s timing of fixing the component) is critical for the hedge to be 

effective. 

Summary and Conclusions 

Ethanol manufacturers confront substantial risk in the normal course of crushing including risks 

related to input prices (corn and natural gas), output prices (including ethanol, DDGs, and other 

residual by-products), in addition to RINS (Renewable Identification Numbers), and extraction 

rates.  The risks associated with these variables can be substantial and are typically managed 

and/or absorbed by the ethanol manufacturer.  Management typically entails a combination of 

futures hedges, over-the-counter (OTC) derivative contracts (when available), and traditional 

forward contracting mechanisms.   

A common risk management tool utilized by many other processing industries facing multiple 

input and output pricing and technical risks involves a component or formula pricing approach 

whereby the technical aspects and processing margin are fixed while giving the buyer the option 

to ‘fix’ the remaining price components at the market at any time up until the maturity of the 

contract.  These contracts are currently used in flour / semolina milling and related processing 

industries; however, they have not found use in the ethanol industry.  These contracts essentially 

transfer much of the price risk from the seller to the buyer whereby the buyer can receive a 

superior price through skill in market timing while the seller can reduce its margin risk to 

essentially the technical performance of the processing plant (i.e., the actual extraction rates 

versus those specified in the contract). 

Optimal Scenario Average Scenario Worst Scenario

#1 Ethanol Extraction Rate (33.5%) Ethanol Extraction Rate (36.6%) Ethanol Extraction Rate (37.1%)

#2 Delivery Corn Basis (20.4%) Delivery Corn Basis (20.0%) Delivery DDG Price (19.4%)

#3 Delivery DDG Price (10.7%) Delivery DDG Price (12.8%) Delivery Corn Basis (12.5%)

#4 Optimal Corn Basis (8.9%)* DDG Extraction Rate (7.8%) DDG Extraction Rate (7.4%)

#5 DDG Extraction Rate (8.7%) Average Corn Basis (7.2%)* Worst Corn Basis (7.2%)*

#6 Optimal DDG Price (7.0%)* Average DDG Price (4.6%)* Worst DDG Price (4.8%)*

*Price fixed by buyer in contract (per scenario).

Rank

Formula Pricing Contract Scenarios (Buyer's Perspective)
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This study examines a potential implementation of this type of fixed-margin, component-based 

formula pricing contract for a prototypical South Dakota ethanol dry mill with corn oil extraction 

capabilities.  The proposed contract would fix the ethanol processing margin and the technical 

crush factors related to ethanol and byproduct production (per bushel of corn) and natural gas 

usage.  The input components to be fixed by the buyer included corn futures and basis, and a 

natural gas formula price (based upon Henry Hub spot).  The output components included 

distillers’ dried grains (DDGs), corn oil, and optionally, the ethanol renewal identification 

number (D6 RINs) prices. 

A Monte Carlo simulation model is set up to measure the ethanol formula price and the actual 

ethanol processor’s margin if such a contract was implemented over the 72-day time window 

from 5/8/2018 to 8/15/2018.  The relevant price series are modeled using stochastic MA(1) time 

series with three assumptions implemented regarding the timing of the buyer fixing the relevant 

prices: (1) an optimal scenario (relevant to the buyer) whereby the buyer fixes the prices at the 

minimum or maximum values within the time window in order to minimize the formula price, 

(2) an average scenario where prices are set at the average over the time window, and (3) a 

worst-case scenario whereby the prices are set to maximize the formula price.  The ethanol seller 

is assumed to offset the corn and natural gas futures price risk by buying futures at the time at 

which the buyer fixes those components.  The RIN value (contract and delivery) is fixed by the 

buyer who absorbs all of the risk of the price fluctuation.  This feature is optional to the contract 

but would provide the buyer with an additional opportunity to enhance their price while not 

providing any additional risk to the seller. 

The simulation results indicate that the buyer could potentially achieve a cost savings (at the 

mean) of 30 cents per gallon (over the price at delivery) under the optimal pricing scenario.  

Even under the average pricing scenario, the results indicate some benefits to the buyer in a 

slightly lower average ethanol price with some slight gains in terms of the price distribution (i.e., 

slightly higher probability of low ethanol price and slightly lower probability of a high ethanol 

price).  In terms of sensitivity, under the average pricing scenario, the highest source of 

variability is the RIN price (close to half) followed by variability in the corn futures and natural 

gas formula (Henry Hub) prices.  The same ranking essentially holds under the optimal pricing 

scenario; however, under the worst-case, the natural gas formula price has the highest ranking 

followed by the corn futures and RIN prices. 

For the seller of ethanol, the results under the average pricing scenario show that while the mean 

margin value is slightly lower when compared to the benchmark, there is a substantial gain in the 

reduction of margin volatility.  Also, the 5% VaR under even the optimal buyer pricing scenario 

is still significantly higher than under the benchmark scenario.  The primary source of variability 

under all three buyer pricing scenarios is the ethanol extraction rate (approximately 1/3 of total 

margin variability) followed by the corn basis at delivery and the DDG price at delivery. 

The results have a number of implications for the implementation of these types of contracts in 

the ethanol industry.  First, the contract provides substantial benefits to ethanol buyers who are 

adept at market timing but even for those who only achieve average prices, there is a small but 

statistically significant benefit in terms of the net ethanol formula price.  A considerable portion 

of the risk / opportunity to the buyer is through the local RIN price (almost 50% of variability 

under average pricing scenario and over 80% for the optimal scenario).  The other two major 
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sources of price variability are the corn futures and natural gas formula price which can be 

effectively managed by the buyer through the adept use of corn and natural gas futures and 

option contracts. 

Second, the contract provides an effective margin risk management tool to the ethanol seller with 

a substantial reduction in the variability and downside risk (VaR) of the net margin while 

sacrificing a small amount of return at the mean under the average pricing scenario.  The contract 

provides an opportunity for the ethanol seller to realize additional margin through achieving a 

higher ethanol extraction rate than the contracted value with each 1% increase in efficiency 

resulting in an approximate 2% increase in net margin.  The seller can also achieve additional 

material reductions in margin variability and risk through the availability and use of risk 

management tools related to the corn basis and local DDG price. 

A third and more minor observation is that the factors related to corn oil extraction and pricing 

are essentially not material to either the buyer’s formula price or the seller’s margin under all 

three pricing scenarios.  Therefore, the results indicate that having a price risk management tool 

for corn oil is not material to the success of the contract. 
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