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Short-Term Dynamics and Structural Changes in the United States and Brazil Soybean 

Basis: Seasonality, Volatility, Structural Breaks and Information Flows 

 

Recently, the United States - China trade dispute has emphasized the importance of Brazil as a 

major export competitor in the global soybean market. In this paper, we examine the time series 

characteristics of United States and Brazilian soybean basis markets for seasonality, changes in 

mean level, intermarket information flows, and other time series behavior. We specifically 

examined basis at 31 origins and 2 export locations in the United States and a primary export 

market in Brazil. The results strongly support the presence of analog seasonality indicating that 

seasonal patterns vary greatly from year-to-year at all locations. Time series intervention 

analysis indicates that the United States - China trade dispute had a significant lasting effect on 

the basis level in the Brazilian market but not in the United States. Granger causality analysis of 

information flows between the origin and export basis markets prior to and after the 

announcement of tariffs in the United States - China trade dispute shows a significant dampening 

effect upon the information flows between the markets following the announcement of tariffs.  

These results are useful in that they can provide guidance to market practitioners in modeling 

basis forecasts and also provide useful information regarding the impact of the recent United 

States – China dispute upon the behavior of these basis markets. 

Key words: soybean basis, analog seasonality, Box-Jenkins time series, Granger causality 

 

Introduction 

Intense competition exists in the soybean markets, both domestically and internationally.  Within 

the United States, there is rivalry between the two dominant ports, the United States Gulf (USG) 

and the Pacific Northwest (PNW), which are impacted by many random variables that change 

over time. A rivalry also exists between the United States and Brazil which has now emerged to 

be the dominant soybean exporting country.  Brazilian soybean exports have been growing at a 

rapid rate, where logistics, quality and other factors are important, notwithstanding the recent 

interventions.  Some of the important features of this competition include: spatially differentiated 

production; bi-modal (annual) shipping patterns from each country; multiple ports from each 

supplier; secondary markets for rail cars and barge rates that are volatile and seasonal; excessive, 

though improving, waiting time in Brazil causing accrual of demurrage costs, ocean shipping 

costs differentials; quality differentials, exchange rates, among others.  The effects of these 

features are manifested in basis values at respective ports and origins.  Ultimately, countries and 

traders compete based on the basis and, therefore, an understanding of the interrelationships and 

dynamics are critical to understanding these markets. 

International competitiveness in soybean markets has evolved over the past couple decades.  

Traditionally, the United States was the dominant exporter and has a highly developed logistical 

system for grains and oilseeds.  Over time, Brazil has expanded its production and exports.  

Brazil has had a lesser developed logistical system, mostly dominated by trucks shipping to the 

dominate ports at Santos and Paranagua.  The effect of this was for a higher cost logistical 
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system, and characterized by periodic and elongated wait times.  Over time, this system has been 

improving with new ports, better interior shipping and the effect has been for reduced wait times.  

The spatial competition is further exacerbated by the recent United States - China trade dispute 

and the resulting Phase 1 agreement. The result of the trade dispute was to: 1) impose a tariff on 

shipments from the United States, 2) increase exports from Brazil, and 3) reduce those from the 

United States.  The resulting Phase I agreement states that China can expand its agricultural 

imports from the United States, but, these are subject to a number of conditions one of which is 

that purchases would have to be at “market competitive prices”.  

The law of one price is probably not adhered in these markets due in part to the evolving 

maturity of the marketing system, in addition to the seasonal characteristics of production and 

exports, as well as logistics and storage capacity.  Instead, there has always been notable price 

differentials, frequently exceeding costs differences, and exacerbated by seasonality and lack of 

transparency.  Over time these markets have become relatively more transparent.   

The purpose of this study is to examine the time series characteristics of the United States and 

Brazilian soybean basis markets from a seasonality, mean heterogeneity, Box-Jenkins 

autoregressive-moving average, heteroscedasticity (ARCH), and Granger causality perspective.  

Of particular interest is the potential impact of the recent United States – China trade dispute 

upon these markets from a time series perspective.  This paper makes several contributions to the 

literature on commodity market analysis.  One is the introduction of statistical methods that have 

not been commonly used in agricultural economics research such as the use of the standard 

normal homogeneity test (SNHT) to test for shifts in the mean basis level over time, and the use 

of the SEATS procedure for identifying the appropriate Box-Jenkins time series model to use.  

These statistical methods provide agricultural economics and industry participants with 

additional tools that can be applied to enhance understanding of commodity market dynamics 

and have many potential applications elsewhere.  Second, the paper provides a better 

understanding of spatial and dynamic interrelationships in international agricultural markets.  

Only a few previous studies have addressed any of these.  The changes identified here are 

notable and provide motivation for additional studies.  Finally, for analysts of international 

markets and competition, this study provides insights that are important for understanding 

competition. 

Background and Previous Studies 

Basis behavior and volatility at both origin and export markets has become important for 

commodity and risk analysts in making risk management decisions.  This is particularly the case 

for soybeans although the concepts are similar for other international commodities such as corn 

and wheat. 

Background 

The United States grain marketing system adopted a number of notable changes over the past 

decades.  Among them, one is the growth in soybean production in the United States with 
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substantial growth to the northwest of traditional growing regions.  Similarly, there has been like 

growth in Brazil as soybean production expanded north and westerly.  

 There have been several changes in the United States logistics system.  One is the substantial 

growth in exports from the PNW ports, which in the case of soybeans, expanded from less than 5 

million metric tons in 2000/01 to a peak of 20 million metric tons in 2016/17, and has since 

declined sharply.  Other changes in logistics include adoption of forward shipping instruments 

(secondary rail markets), shuttle rail shipping, and quite massive investments in the country 

handling and rail infrastructure -- all of which lower marketing costs.  Soybean logistics is also 

heavily dominated by the United States river system which provides low cost and competitive 

barge shipping.  However, costs of these shipments have substantial volatility (intra-year and 

inter-year), and the river system needs upgrading.  Finally, United States growers have added 

substantial on-farm storage in recent years. 

Inter-port competition within the United States was analyzed by Skadberg et al. (2015).  Export 

locations at the USG and PNW were included along with origin basis at a large number of 

interior origins.  Shipping costs from each origin to destination included tariff rates, fuel service 

charges and secondary market values for rail shuttles. The model was specified as a spatial 

stochastic optimization model using copula distributions to determine the most likely spatial 

arbitrage opportunities.   The study concluded that: 1) origins in the Upper Midwest had become 

highly dependent upon the PNW as a destination market, 2) arbitrage payoffs vary regionally, 

and 3) vertically integrated trading firms can capitalize on spatial-arbitrage payoffs.    

The grain marketing system in Brazil is evolving and has a much lesser developed interior 

shipping system (e.g., rail and barges, in addition to roads and bridges) compared with the 

United States.   The impact of this is relatively high interior shipping and handling costs in Brazil 

(USDA-AMS 2019). There is less extensive on-farm storage and, in addition, the port 

infrastructure in Brazil has not been well developed.  The growth in soybean production has also 

resulted in longer-haul shipping.  In response, there have been efforts to expand the roadways 

(e.g., BR163), rail lines and barge facilities to diversify the logistical network.  Concurrently, the 

port infrastructure has also been expanding -- there currently are multiple ports either under 

development or slated for expansion.  The observed changes in the logistical system have 

resulted in intense rivalry between the United States and Brazil, particularly in serving major 

importing countries such as China. 

Another feature of United States – Brazil export competition is soybean quality.  Generally, it 

has been observed that quality from Brazil exceeds that of the USG (Park and Hurburgh 2002; 

Thakur and Hurburgh 2007) and the quality at the USG exceeds that of the PNW (Hertsgaard, 

Wilson and Dahl 2019; Wilson, Dahl and Hertsgaard 2020).  However, this is random or 

periodic, and as production in each country expands geographically, the spatial distribution of its 

quality is changing.  Nevertheless, it is common for traders to impute a quality differential in 

bids for soybeans across origins which encourages varying forms of inter-port blending to meet 

buyer requirements. 
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Some of these changes occurred within our study period and are important to the results of this 

paper.  Importantly, Brazil had been exporting for many years.  However, beginning in the 

2016/17 marketing year, Brazilian soybean production rose sharply from 85 to 120 million 

metric tons.  Another change occurred during the 2013/14 marketing year when the United States 

had reduced rail car velocity, which increased United States export basis (Lakkakula and Wilson 

2020).  Brazilian vessel waiting times were reduced from 20 days to about 2-3 days and 

Brazilian interior shipping costs decreased by $1.00 - $1.50 per bushel during this time period. 

Finally, traders in both markets are heavily dependent on the Chicago Mercantile Exchange 

(CME) soybean futures for hedging purchases and/or sales from each market.  Though the CME 

plays a critical role in futures price discovery, the correlations to offshore prices are poor and 

have deteriorated.  Partly due to this, it has given rise to proposals to develop an alternative 

futures specification to include in some way Brazil port delivery (Rennison and Meyer 2018; 

Almeida and Durisin 2019). In addition, there are efforts for more detailed ‘market assessments’ 

(such as from Platts and AgriCensus) of Brazilian basis values via the over-the-counter (OTC) 

markets. 

Previous Studies on the Basis 

Empirical analysis of the basis has a long history in agricultural commodity markets.   Some of 

these analyze basis at delivery markets.  Other studies have analyzed the basis at non-delivery 

markets (e.g., Taylor and Tomek 1984; Parcell 2000; Lara-Chavez and Alexander 2006). A 

number of studies analyzed international behavior of the basis.  Zhang and Houston (2005) 

analyzed how soybean production in South America and futures volatility impacted the basis.  

They found that both of these variables had a negative impact on the basis.  Tilley and Campbell 

(1988) analyzed the USG HRW basis.  They found that the weekly basis was mostly explained 

by exports, free stocks, and the grain embargo. 

Haigh and Bryant (2000) analyzed the effect of barge and ocean freight values in international 

grain markets using a Vector Error Correction GARCH-in-Mean model.  Results indicated both 

barge and ocean price volatility influence grain prices.  Barge price volatility’s impact is greater 

on both grain prices and marketing margins compared with ocean price volatility.  More recently, 

Lakkakula and Wilson (2020) analyzed the origin and export basis for soybeans in the United 

States, and factors impacting this interdependency.  Results indicated that: 1) the origin and 

destination basis are determined simultaneously, 2) there are numerous logistical and export 

factors that affect both basis values, and 3) changes in shipping costs had a greater impact on the 

export basis when compared to the origin basis.  

Bullock and Wilson (2020) examined the impact of fundamental factors upon the marketing-year 

average basis at the two major United States export markets (USG and PNW).  They also 

introduced the concept of analog seasonality which was applied to the export basis for both 

markets.  Results indicated that the primary factors impacting the average United States soybean 

export basis were the Brazilian basis level, competition from domestic origins, and the level of 

imports by China.  The type of seasonal analog prevailing in the basis markets was primarily 

influenced by logistical conditions (i.e., railcar shortages, secondary car values, etc.) rather than 

market competition. 
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Time series models have been used in recent studies to examine properties of soybean basis at 

origin market locations (Dhuyvetter and Kastens 1998; Sanders and Manfredo 2006; Taylor, 

Dhuyvetter and Kastens 2006; Hatchett, Brorsen and Anderson 2010; Onel and Karali 2014; Lee 

and Brorsen 2017; Thompson et al. 2019).  Additionally, other studies have combined time series 

with fundamental approaches to soybean basis forecasting (Jiang and Hayenga 1997; Parcell 

2000; Zhang and Houston 2005).   

There have been several studies that analyze commodity prices using time series techniques 

(Siami-Namini and Hudson 2017; Saghaian 2010). Here we summarize a few recent studies 

related to the applications of Granger causality as well as studies that are relevant to soybeans. 

Bradshaw and Orden (1990) used Granger causality tests to analyze whether the real trade 

weighted agricultural exchange rate granger causes real monthly prices and export sales of 

wheat, corn, and soybeans. The authors find the evidence of Granger causality from the 

exchange rate to export sales but the results are not definitive in the case of the direction of 

Granger causality to prices.   

Using panel vector autoregression and Granger causality tests, Rezitis (2015) examined the 

relationship between crude oil prices, agricultural commodity prices, and fertilizer prices. Results 

of the study indicate that there is a bidirectional Granger causality between crude oil prices and 

international agricultural prices as well as between US exchange rates and international 

agricultural prices.   

Lakkakula (2018) estimated causal relationships among five fertilizer prices using asymptotic 

Wald tests and bootstrap resampling techniques using Granger causality analysis. Among others, 

one important result indicated that the urea price Granger causes all other fertilizer prices, 

including muriate of potash, triple superphosphate, rock phosphate, and diammonium phosphate.  

Data and Methodology 

The data used in this study was comprised of weekly closing time series observations over the 

1/4/2004 to 12/27/2019 time frame for the basis (cash minus futures) in two United States export 

markets (USG and PNW), one Brazilian export market (Santos), and 31 United States origin 

markets spread across 8 states (Ohio, Indiana, Illinois, Iowa, Minnesota, North Dakota, South 

Dakota, and Nebraska).  Missing values in the dataset were filled using either linear interpolation 

or the nonlinear iterative partial least squares (NIPALS) procedure (Wold 1973) depending upon 

the nature of the missing data.  For some of the analyses in this study, the weekly data were 

converted into monthly averages of the weekly closing values using Tableau (Tableau Software 

2020).  For deriving additive seasonal indices, the monthly basis data were converted into 

marketing year (September through August) by month format for the 2004/2005 through 2018/19 

marketing years. 

Table 1 (Appendix A) lists the 31 United States origin basis markets and the electronic sources 

for the cash price data which were obtained from either ProphetX (Data Transmission Network 

2020) or Eikon (Refinitiv 2020).  These values were converted into nearby basis values by 

subtracting the nearby soybean futures price obtained from Eikon (code SC1).  Basis data for the 
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United States export markets (USG and PNW) was from TradeWest Brokerage and are based 

upon CIF values.  For Santos, the export prices were from Eikon (code: SB-FOBEXS-C1) and 

are FOB values per metric ton.  These were converted from metric tons to bushels assuming a 

standard soybean test weight of 60 pounds per bushel. 

Figure 1 (Appendix B) shows the 31 interior locations geographically along with the long-term 

average basis values using a color range.  The average basis value declines when moving from 

East to West across the map.  The Illinois, Indiana, and Ohio locations are mostly at a premium 

to the futures and represent mostly barge loading facilities on the Ohio, Illinois, and Mississippi 

Rivers.  The average basis also declines along the Mississippi River when moving from South to 

North. 

Figures 2 and 3 in Appendix B show monthly average soybean basis values for the USG and 

Alden, Iowa respectively along with the 12-month moving averages.  Note that the moving 

averages from both graphs show the same basic long-term pattern which also holds across all of 

the United States locations in this study.  A general weakening trend is observed through early 

2008.  This is followed by a strengthening trend through the beginning of the 2009/10 marketing 

year (Sept 2009). This is followed by a period of stability through the beginning of the 2012/13 

marketing year when there was a sharp increase in the basis through the beginning of the 

2013/14 marketing year.  A brief period of stability is followed by a general decline in basis 

values beginning in mid-2015 through the end of 2019.   

Figure 4 shows the Santos basis over the same time period with the 12-month moving average.  

The moving average pattern differs substantially from the observed United States pattern.  Also, 

the Santos basis exhibits a much higher level of volatility when compared to the USG and PNW 

basis. 

Basis Seasonal Analogs 

For examining seasonality, the analog methodology presented in Bullock and Wilson (2020) was 

used on the monthly average time series.  First, each of the data series were converted into a 

marketing year by month.  Next, the additive seasonal indices were calculated by taking each 

monthly basis value and subtracting the corresponding marketing year average.  To derive the 

seasonal analogs, the marketing years were clustered using the agglomerative hierarchal 

clustering (AHC) algorithm (Ward 1963) based upon dissimilarity by Euclidian distance with 

Ward’s agglomeration and minimum-entropy (Shannon 1948) to determine the cutoff point on 

the dendrogram.  From this procedure, a set of unique seasonal analogs was derived for each 

location represented by clusters of marketing years.  These clusters are represented by an integer 

label for each marketing year by location with the initial marketing year (2004/05) always 

starting as ‘1’ with the next differing marketing year beginning analog ‘2’ and so forth. 

The seasonal analog clusters were then visually examined to determine any commonalities 

between locations.  Additionally, the correlation of seasonal analogs across locations was 

roughly derived by applying an extra layer of clustering to the analog labels arranged in a 

marketing year by location matrix.  This clustering was done using AHC with similarity based 

upon a co-occurrence matrix using unweighted pair-group averaging for the agglomeration 
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method with minimum entropy used to determine the dendrogram cutoff.  An identical procedure 

was applied to the matrix for grouping similar marketing years across locations.  All of the 

seasonal clustering in this study was done using the XLStat (Addinsoft 2020) computer software. 

Homogeneity Tests of Mean Basis Levels 

To determine if recent events, such as the emergence of Brazil as an export competitor and/or the 

recent trade dispute with China, have led to shifts in the average basis level for each location, a 

time series homogeneity test proposed by (Alexandersson 1986) called a standard normal 

homogeneity test (SNHT) was applied to each data series.  The SNHT test was applied to the 

standardized normal values [zt = (xt - µ)/σ] of the time series data.  The null hypothesis (H0) of 

the test is that all zt (t = 1,…,T) follow a standard normal [N(0,1)] distribution.  The alternate 

hypothesis (Ha) is that there exists a breakpoint v on the 1,…,T interval where the zt follow an 

N(µ1, 1) distribution for t = 1,…,v and follow a N(µ2, 1) distribution for t = v+1,…,T where µ1 ≠ 

µ2.  The test statistic (T0) for the SNHT test is defined by: 

(1) 
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The statistical distribution and p-value for the T0 statistic was derived using Monte Carlo 

methods.  In this study, the XLStat (Addinsoft 2020) statistical software was used to conduct the 

SNHT test on the monthly average time series for each location.  To limit the testing to the 

previously mentioned recent events, the test was applied only to monthly data starting with the 

beginning of the 2008/09 marketing year (September 2008) through the end of the dataset 

(December 2019). 

Box-Jenkins Time Series and Intervention Modeling  

To determine the individual time series characteristics of each data series, a Box-Jenkins 

autoregressive integrated moving-average model (Box and Jenkins 1970) with a seasonal 

component (SARIMA) was fit to the monthly observations for each location.  Normally, the 

identification of a Box-Jenkins time series model is an iterative process that follows the steps of 

(1) model identification, (2) model estimation, and (3) diagnostic testing.  The model 

identification phase typically involves visual examination of the autocorrelation (acf) and partial 

autocorrelation (pacf) functions of the time series along with stationarity statistical tests.  A 

candidate model is identified and estimated.  Then the residuals of the estimated model are 

examined to determine whether they statistical fit a pattern of white noise (i.e., no significant 

spikes in the acf and pacf based upon statistics such as the Ljung-Box).   
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There have been some attempts to automate the Box-Jenkins model identification process.  Most 

of these have been based upon estimating a standard set of models and choosing the best model 

based upon a diagnostic statistic or information criterion.  An example of this would be the 

Bestfit time series model estimation procedure that is part of the @Risk Monte Carlo simulation 

software package (Palisade Software 2018).  However, the seasonal capabilities of Bestfit are 

limited to pre-application of either seasonal differencing or additive seasonal indexing of the data 

which preclude the identification and estimation of true Box-Jenkins SARIMA models. 

An automated procedure proposed by Gómez and Maravall (2001) called Signal Extraction in 

ARIMA Time Series (SEATS) was used to identify both the regular (ARIMA) and seasonal 

(SARIMA) Box-Jenkins time series components for each location’s basis time series (monthly 

average).  The SEATS procedure first determines the optimal level of regular and seasonal 

differencing through the estimation of unit roots using an iterative process of estimating 

SARIMA (1,1) x (1,1) on the differenced series.  The optimal level of differencing is determined 

when the estimated model coefficients no longer produce unit roots.  After the level of 

differencing is identified, the SEATS procedure identifies the regular and seasonal ARMA 

orders of the differenced series using a penalty function approach based upon the Bayesian 

Information Criterion (BIC) and first proposed by Hannan and Rissanen (1982). 

The SEATS procedure that is part of the X-13ARIMA-SEATS (Monsell et al. 2013) seasonal 

adjustment software was used (with logarithmic transform and outlier detection set to ‘off’) to 

identify the level of differencing and order of the SARIMA model for each series.  Then, the 

identified models were estimated using the ‘arima’ procedure in the GNU Regression, 

Econometric and Time-series Library (GRETL) econometrics software program (Cottrell and 

Lucchetti 2019).  To test for time-varying volatility, an ARCH LM test (12 lags) was applied to 

the residuals from each fitted time series model.  In addition, two simple fixed-effect intervention 

models were estimated for each time series by adding a dummy variable to the estimated model 

and testing for statistical significance of the dummy variable coefficient.  The dummy variable 

(D1) represents the time period corresponding to and following the announcement of United 

States tariffs (March 18, 2018) on the import of Chinese goods and is equal to ‘1’ between 

March 2018 and December 2019 and ‘0’ otherwise. 

Granger Causality and Information Flows 

Granger Causality (Granger 1969) was used to determine information flows among multiple 

basis markets.  The tests were run on the weekly time series.  In order to simplify the analyses, 

the origin market locations were aggregated into two separate regions: (1) the Eastern Corn Belt 

comprising locations in Illinois, Indiana, and Ohio; and (2) the Western Corn Belt comprising 

Iowa, Minnesota, Nebraska, South Dakota, and North Dakota.  The regional basis values were 

calculated as the simple arithmetic average of all locations within the region. 

To examine the impact of the recent China trade dispute upon information flows, the weekly 

time series was divided into two periods: (1) the weekly data prior to the announcement of tariffs 

on 3/18/2018 which ran from 1/2/2004 through 3/16/2018, and (2) the data following the 

announcement which ran from 3/23/2018 through 12/27/2019.  The Granger Causality tests were 

run on each dataset separately and the causal flows compared between the two periods.  It is 
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important that although the tariffs were announced on 3/18/2018, they did not go into effect until 

the following July. 

To maintain comparable models between the two time periods, the same lag length was 

maintained between the two time periods and determined based upon application of the Hannan-

Quinn Information Criterion (HQIC; Hannan and Quinn 1979) to each time period and retaining 

the longer of the two identified lag lengths.  The HQIC was used because it provides a good 

compromise between the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) which can often give conflicting results.  For the pre-announcement time period, 

the HQIC identified an optimal lag length of three weeks while the post-announcement period 

had an optimal lag length of one week.  Therefore, a lag length of 3 weeks was used in applying 

Granger Causality tests for both time periods.  The lag lengths were determined using the ‘var’ 

command with the ‘---lagselect’ option in GRETL with a max lag length of 24 weeks for the pre-

announcement period and 6 weeks for the post-announcement period. 

The presence of unit roots was determined using KPSS (Kwiatkowski et al. 1992) test to each 

individual time series and time period.  The results of the tests indicated that all of the series had 

one unit root with the exception of the USG series in the post-announcement period which had 

no unit root.  Due to the presence of unit roots, a test (TY) proposed by Toda and Yamamoto 

(1995) was used to test for Granger Causality between basis pairs. 

The TY test basically involves estimating a vector autoregression model between each pair (x, y) 

of series in levels with lag length equal to l + d with l equal to the optimal identified lag length 

and d equal to the maximum number of unit roots between the two series.  To determine if series 

y “Granger causes” series x, a Wald chi-square test (degrees of freedom equal to l) is applied to 

the null hypothesis that only the first l lags of the series y coefficients in the series x equation are 

equal to zero.  If the null hypothesis is rejected, then Granger causality is established from series 

y to series x.  The same test is applied to the first l lags of series x coefficients in the series y 

equation to establish whether x causes y.  Causality with feedback is established between x and y 

if each series causes the other.  The causality results are further verified by application of 

Johansen cointegration tests (Johansen 1988; Johansen 1991) to determine if a cointegrating 

vector exists between the two series. 

In this study, the TY test was applied to each pair of series (x, y) by estimating the VAR 

regression equations manually using the ‘ols’ command in GRETL with the lag length set to 4 

weeks (i.e., 3-week optimal lag length plus 1 week to account for unit root).  Causality was then 

tested by applying the GRETL ‘omit’ command on the first 3 lagged coefficients of the causing 

variable with the ‘—chi-square’ flag activated.  For application of the pairwise Johansen tests, 

the GRETL ‘coint2’ command was used with lag length set to 4 weeks. 

Results 

The estimation and statistical test results are presented in tabular (Appendix A) and graphical 

(Appendix B) format where appropriate.  Each result is followed by a discussion of the key 

implications. 
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Seasonal Analog Analysis 

A summary of the seasonal analog groupings (based upon application of AHC clustering using 

Euclidian distance dissimilarity) and the count of analogs by location is contained in Table 2.  

The table is formatted in a location (row) by marketing year (column) format.  The numbers in 

the table indicate the seasonal analog identifier number.  The numbers begin with the first 

marketing year as ‘1’ and then subsequently assign a different integer in ascending order as a 

marketing year begins a new analog cluster.  The analogs that comprised a single marketing year 

are highlighted in bold italics.  These single year analogs are typically referred to as outliers and 

are generally characterized by a greater level of volatility when compared to the multiple year 

analogs.   

For a majority of locations, the 2012/13 and 2013/14 marketing years were characterized by 

these single-year analogs.  Bullock and Wilson (2020) indicated that these two marketing years 

were highlighted by logistical issues.  This was primarily due to the confluence of increased 

demand for rail transportation from other sectors (coal, oil, intermodal, sand, and gravel), record 

2013/14 corn production, sizable United States soybean and wheat crops, record Canadian wheat 

production along with severe winter weather which compounded existing rail capacity 

constraints (USDA-OCE and USDA-AMS 2015).  Also, it was notable that the marketing years 

overlapping with the China trade dispute (2017/18 and 2018/19) were grouped into regular 

seasonal analog patterns for all locations with the exception of Santos which had a single-year 

analog pattern in 2018/19. 

Figure 5 shows a histogram of the number of locations by number of analogs with a statistical 

summary of the number of analogs by location.  Over a third (13 out of 34 or 38.2%) of the 

locations had just the minimum of 3 analogs.  An additional quarter (9 out of 34 or 26.5%) of the 

locations had 4 analogs while the remaining 12 locations (35.3%) had 5 or greater analogs with 

just one location each in the top two categories (7 and 8 analogs).  The mean number of analogs 

per location was just over 4 (4.24) while the Pearson skewness coefficient indicates the 

distribution is skewed to the upward side.  These results indicate that there were many analogues 

and they varied across origins, and through time.   

A plot of the three seasonal analogs for the PNW export market is illustrated in Figure 6.  Analog 

1 exhibits the prevailing seasonal pattern (11 out of 15 years) which is mostly a sideways pattern 

with slightly above average basis values during the 1st half of marketing year followed by below 

average basis values in the 2nd half of the marketing year.  Analog 2 (3 out of 15 years) shows a 

general strengthening pattern that occurs in years with tightening carryout-to-use ratios (2007/08, 

2011/12, and 2013/14) brought on by substantial increases in Chinese soybean imports.  Analog 

3 is a single-year (2014/15) outlier reflective of transportation disruptions. 

Seasonal analogs for Bayard, Iowa are illustrated in Figure 7.  Analog 1 (8 out of 15 years) is the 

normal sideways pattern in the basis.  Analog 2 (5 out of 15 years) is a flat basis pattern with a 

strengthening basis during the final 4 months and is reflective of generally strong export demand.  

Analog 3 is a single-year (2012/13) outlier reflective of the severe drought in the summer of 

2012.  Analog 4 is a single-year (2013/14) outlier reflective of transportation disruptions. 
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Figure 8 shows a plot of the seasonal analogs for Santos, Brazil.  Analog 1 (11 out of 15 years) is 

the normal sideways pattern with slightly stronger basis in the 1st half of the United States 

marketing year and a slightly lower basis in the 2nd half of the marketing year.  Analog 2 is a 

single-year (2011/12) analog showing a volatile pattern with a complete collapse of the basis in 

the 2nd half of the marketing year.  This collapse was a sharp decrease in exports after the peak-

month of May of that marketing year.  Analog 3 has two consecutive years (2012/13 and 

2013/14) with a pattern reflective of the normal seasonal pattern (Analog 1) but with a much 

higher level of volatility.  These years correspond to the emergence of Brazil as a major 

competitor on the international market.  Analog 4 is a single-year (2018/19) outlier with a 

volatile pattern and is likely reflective of the extreme volatility brought on by the United States - 

China trade dispute. 

Table 3 shows the result of applying AHC clustering (based upon co-occurrence similarity) to 

the locations based upon analog identifiers by marketing year.  The clustering procedure placed 

the locations into 4 distinct groupings.  The groupings are generally along the lines of the 

number of analogs with the first group containing the most locations (21 or 61.8%) with the 

fewest number of analogs (3, 4, or 5).  The last two groupings contain only two locations each 

with the largest number of analogs (6, 7, or 8).  Table 4 shows the co-occurrence clustering of 

the marketing years based upon analog identifiers by location.  Almost all (13 out of 15) of the 

marketing years fall into the first grouping.  The next two groupings contain single-year outliers 

for the 2012/13 and 2013/14 marketing years which reflect the years with high transportation 

costs and logistical difficulties. 

Overall, two observations can be made regarding the seasonal analog analysis.  First, the results 

indicate that seasonality is not homogenous across locations and time.  The results clearly show 

that analog seasonality exists not only for the export markets (as shown in Bullock and Wilson 

2020) but also can be extended to origin and international export (Santos, Brazil) markets.  The 

total number of analogs varies widely across locations; however, a majority of the locations 

show volatile outlier analogs in marketing years (2012/13, 2013/14, and 2014/15) where there 

were logistical difficulties.  Second, it appears that the recent United States - China trade dispute 

had little, if any, impact upon basis seasonality with 2018/19 grouped into the normal seasonal 

analog for all of the locations with the noted exception of Santos, Brazil which has it as an 

outlier analog. 

Homogeneity Tests of Mean Basis Levels 

A summary of the Standard Normal Homogeneity Test (SNHT) across all locations covering the 

monthly time period from the beginning of the 2008/09 marketing year (September 2008) 

through the end of the dataset (December 2019) is illustrated in Table 5.  The results show 

breakpoints in the mean basis level ranging from October 2010 to September 2016.  The T0 

statistics indicate statistically significant differences in the mean values at the 95% confidence 

level with the exception of five locations (all located in Illinois, Indiana, and Ohio).  The origin 

locations with the early breakpoints (November 2011 or earlier) had an increase in the mean 

basis from the before break to after time windows.  These locations are also exclusively located 

in the states east of the Mississippi River (Illinois, Indiana, and Ohio).  Only two locations east 



12 

 

of the Mississippi River (Mount Vernon, IN; and Nauvoo, IL) have late (Sept 2016) breakpoints 

with a negative change in the basis. 

For origin locations west of the Mississippi River (Iowa, Minnesota, Nebraska, North Dakota, 

and South Dakota), the breakpoints occurred in November 2013 or later with statistically 

significant (95% or better) negative shifts in the mean basis level.  The two United States export 

locations (USG and PNW) both had later breakpoints and statistically significant negative shifts 

in their mean basis levels.  Santos, Brazil, on the other hand, had a later (August 2014) 

breakpoint with a statistically significant upward shift in the mean basis value. 

Overall, two observations can be made from these results.  First, the increase in the mean Santos, 

Brazil basis in August 2014 lead a subsequent decline in the PNW (December 2014) and USG 

(September 2016) mean basis values.  Figures 9 and 10 show the SNHT test results graphically 

for the PNW and Santos respectively.  Second, these results indicate that the emergence of Brazil 

as a major export competitor had a larger and more significant negative impact on United States 

average basis levels when compared to the more recent United States – China trade dispute. 

Box-Jenkins Time Series and Intervention Modeling 

The data was analyzed to determine the form of the time series characterization.  The results of 

the Box-Jenkins time series identification using the SEATS procedure along with the results of 

the ARCH and China trade dispute intervention analysis are illustrated in Table 6.  The most 

commonly identified Box-Jenkins model (monthly data) was the SARIMA (1, 0, 0) x (1, 0, 0)2 

which was identified in 13 (38.2%) of the locations.  This was followed by the SARIMA (2, 0, 2) 

x (1, 0, 0) which was identified in 5 locations (14.7%) and the SARIMA (1, 0, 1) x (1, 0, 0) 

which was identified in 4 locations (11.8%).  Only two locations (Finley, ND and PNW) had 

identified models without a seasonal component. 

The Lagrange Multiplier (LM) test statistics supported ARCH behavior at the 95% confidence 

level in the time series residuals for the United States origin locations.  The PNW had support (p-

value of 0.0787) for ARCH behavior at the 90% confidence level.  The intervention dummy 

variable for the China trade dispute announcement (D1) was mostly negative but statistically 

insignificant (at 95% level) for the United States locations.  However, D1 was both strongly 

positive and significant for Santos, Brazil. 

From these results, two major observations can be made.  First, ARCH time series behavior is 

strongly present in the origin basis series but not for the export markets.  Second, the China trade 

dispute had a statistically significant and strongly positive impact upon the mean basis level for 

Santos, Brazil while having no significant impact upon United States export and origin basis 

values. 

                                                 
2 The Box-Jenkins SARIMA notation has the regular time series part in he first set of braces followed by the 

seasonal part in the second set.  The terms in each part are listed as number of autoregressive lags, degree of 

differencing, and number of moving average lags.  So, for example, a SARIMA (1,0,0) x (1,0,0) is a Box-Jenkins 

model with 1 regular and 1 seasonal autoregressive lag with no differencing or moving average terms. 
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Granger Causality and Information Flows 

Finally, Granger causality tests were used to characterize the information flows among these 

markets.  The Toda-Yamamoto Wald chi-square statistics for the pre-China trade dispute period 

(prior to March 18, 2018) are illustrated in Table 7.  The causality relationships implied by these 

statistics are summarized geographically in Figure 11.  Application of the Johansen cointegration 

tests supported the chi-squared test results.  

These results indicate that these markets were highly interdependent with multiple feedback 

loops between the three export markets (PNW, USG, and Santos) and the two interior regions 

(Western Corn Belt, Eastern Corn Belt) prior to the tariff announcement.  The primary integrator 

for all of the basis markets was the USG, which was strongly caused, from a Granger 

perspective, by all of the other markets.  The information from the USG was strongly reflected in 

both the PNW and Santos markets. 

For the post-China trade dispute period (weeks following March 18, 2018 through end of 2019), 

the Toda-Yamamoto Wald chi-square statistics are illustrated in Table 8 and summarized 

geographically in Figure 12.  The Johansen cointegration tests supported the chi-squared results.  

The results indicated a substantial decline in the interdependency among the basis markets when 

compared to the pre-announcement period.  The PNW and USG export markets became 

completely exogenous to the system while Santos was ‘Granger caused’ by the United States 

interior markets with no feedback loop present. 

These results indicate that while there was a large degree of interdependency in the United States 

and Brazilian basis market, the onset of the China trade dispute with the United States had an 

important dampening effect on the information flows between these markets.  Prior to the 

dispute, basis values between the various markets were likely influenced by the standard basis 

fundamentals such as transportation cost differentials, market competition, and seasonal 

influences. Subsequent to the announcement of tariffs, these interrelationships likely broke down 

as Brazil became the primary export market with the PNW and USG becoming secondary in 

terms of competition with little export volume flowing through either port.  With the disfunction 

of the United States export markets, Santos (Brazil) mainly looked to the United States interior 

markets (which were still functioning) for information on these basis fundamentals. 

Summary and Conclusions 

The purpose of this study was to analyze the short-term dynamics of the United States origin and 

export, and Brazilian export basis values using time series methods.  Specifically, we analyze 

seasonality, mean level homogeneity, Box-Jenkins time series identification and estimation, 

analysis of time varying volatility, and intervention analysis of the effects of the recent United 

States – China trade dispute, in addition to Granger causality among spatially separated markets 

for the time period preceding and following the onset of announced tariffs in the United States – 

China trade dispute. 

Application of seasonal analog analysis using agglomerative hierarchal clustering (AHC) 

resulted in the identification of between 3 and 8 unique seasonal analogs for each of the 34 
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locations examined.  A majority of the locations had at least one single-year (outlier) analog 

which mostly reflected marketing years characterized by logistical issues.  Many locations also 

had at least one dominant analog that comprised a majority of the marketing years and was 

reflective of a relatively flat basis pattern across the marketing year.  The results indicate that 

seasonality is widely variable from year-to-year and across locations.  This has implications 

regarding the hazard of using annual moving average methods to forecast seasonal basis. 

Application of the SNHT mean homogeneity test to the individual series resulted in 

identification of variable breakpoints in the United States locations that all occurred well before 

the beginning of the United States – China trade dispute in March 2018.  Many of the identified 

breakpoint months for the United States locations corresponded with the emergence of Brazil as 

a major export competitor in the 2013 to 2016 time window.  In almost all of the United States 

locations (particularly west of the Mississippi River and at the export locations), the mean basis 

fell significantly (35 to 60 cents per bushel) while the Brazilian (Santos) mean basis increased by 

70 cents per bushel over the same time period. 

Identification of seasonal Box-Jenkins time series (SARIMA) models was done for each series 

using the SEATS automated procedure.  The results identified 11 different time series model 

specifications across the 34 locations with the SARIMA (1, 0, 0) x (1, 0, 0) as the most common 

(38% of locations). Lagrange Multiplier (LM) test results indicated the strong presence of ARCH 

behavior in the United States origin locations but failed to support ARCH behavior in the United 

States and Brazil export locations.  To examine the potential impact of the United States – China 

trade dispute, a dummy variable representing permanent effects commencing with the March 18, 

2018 announcement of tariffs was added to the identified SARIMA models to estimate time 

series intervention models.  The dummy variable coefficient was only statistically significant at 

the Santos, Brazil location and was strongly positive indicating that the United States – China 

trade dispute had a positive and lasting impact upon only the Brazilian export basis. 

Application of Granger causality tests for the time period preceding the announcement of tariffs 

(March 17, 2018) in the recent China – United States trade dispute strongly supported extensive 

bidirectional causality across all of the markets.  The dominant information aggregator during 

this period appears to be the USG export market.  In the period following the tariff 

announcement, the results failed to support Granger causality with the exception of 

unidirectional causal flows from the United States origin markets to Santos, Brazil.  Both of the 

United States export locations became completely exogenous to the system in this subsequent 

time period. 

Taken together these results have several implications.  One is the significant structural shift 

resulting in increases in the Brazil basis, and decreases of those in the United States (over 

100c/b) is very notable.  This differential is ultimately transmitted to growers as changes in 

relative prices.  That these relationships are changing creates challenges for growers and for 

commodity marketing firms in making trading and risk management decisions, as well as 

decisions about investment in grain marketing infrastructure.  Further, these changing 

relationships have a greater incidence at locations in the Western Corn Belt.       
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Second, these results show that the effect of the Chinese import tariffs are clear, resulting in a 

significant impact on the Santos basis.  This impact has an important effect on traders and 

growers in each country.  The extent that these changes are transitory, or if the time series of the 

bases revert to the prior regime remains to be seen.  Of particular importance is that there is a 

clause in the United States-China Phase 1 agreement which states that imports would be made at 

“market competitive prices.”  Of course, this term is not defined.  As these results indicate, the 

dynamic interdependence among these prices suggests that assessing whether prices are at 

‘market competitive’ levels, will be difficult and subject to seasonal, and prospective structural 

shifts, notwithstanding their non-stationarity. 

Finally, the results have implications for market analysts, as well as firms and organizations 

involved in price discovery and assessment.  Prior to the Chinese imposition of tariffs, these 

basis markets were highly interdependent with numerous unidirectional and bi-directional 

feedback loops resulting in observed values, and the USG was the dominant aggregator of 

information.  This is to be expected.  However, there have been significant structural changes 

and this interdependency has changed.  The results indicate that the Brazil basis now is the 

dominant aggregator of market information.  Port values in the United States have become of 

lesser importance in information flows in this market.  This is significant as the CME, and 

probably others, are exploring developing a separate contract specification, or instrument, 

specifically tied to Brazil.  The vitality of a separate contract specification ultimately depends on 

intermarket correlations.  If the dynamic interdependency following March 2018 persists, 

creating a separate pricing location would be attractive.  
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Appendix A – Tables 

 

Table 1. Listing of Data Sources for Weekly United States Origin Basis Data 
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Table 2. Seasonal Analogs by Location Based Upon AHC Clustering Analysis 
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Table 3. Result of Co-occurrence Clustering of Locations by Marketing Year and Seasonal 

Analog Identifier 
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Table 4. Result of Co-occurrence Clustering of Marketing Years by Locations and Seasonal 

Analog Identifier 
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Table 5. Results of Standard Normal Homogeneity Test (SNHT) For Each Location  

(Sep 2008 to Dec 2019) 
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Table 6. Summary of Box-Jenkins Model Identification by Location with Test Results for ARCH 

and China Trade Dispute Intervention Dummy 
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Table 7. Toda-Yamamoto (1995) Asymptotic Wald Statistics for Pre-China Trade War Period 

 

 

 

 

Table 8. Toda-Yamamoto (1995) Asymptotic Wald Statistics for Post-China Trade War Period 
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Appendix B – Figures 

 

 

Figure 1. Interior locations used in study (with average monthly basis from 2004 to 2019). 
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Figure 2. Monthly average USG soybean basis (Jan 2004 to Dec2019) with 12-month moving 

average. 
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Figure 3. Monthly average Alden, IA soybean basis (Jan 2004 to Dec 2019) with 12-month 

moving average. 
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Figure 4. Monthly average Santos, Brazil soybean basis (Jan 2004 to Dec 2019) with 12-month 

moving average. 
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Figure 5. Histogram of Number of Seasonal Analogs by Location with Statistical Summary 
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Figure 6. Plot of Seasonal Analogs for PNW Soybean Basis 
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Figure 7. Plot of Seasonal Analogs for Bayard, Iowa Soybean Basis 

 

  



34 

 

 

Figure 8. Plot of Seasonal Analogs for Santos, Brazil Soybean Basis 
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Figure 9. SNHT Breakpoint for PNW Soybean Basis 
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Figure 10. SNHT Breakpoint for Santos, Brazil Soybean Basis 
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Figure 11. Map of Causal Flows for Pre-China Trade War Time Period  

(Prior to March 18, 2018) 
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Figure 12. Map of Causal Flows for Post-China Trade War Time Period  

(Following March 18, 2018) 

 

 


