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Impacts of Non-Grade Quality Factors on North Dakota Origin Soybean 

Basis Values: A Panel Regression Analysis 

The impact of protein and essential amino acid (cysteine, lysine, methionine, threonine, and 

tryptophan) content upon North Dakota origin basis values was examined using a panel dataset 

covering eight Crop Reporting Districts (CRDs) over ten marketing years (2009/10 through 

2018/19).  Fixed-effect panel regression models were estimated based upon marketing year and 

quarterly averages to capture seasonal effects related to the timing of quality report releases. 

Principal component analysis (PCA) was applied to the amino acid quality measurements as a 

data reduction technique and to correct for multicollinearity in the variables.  The regression 

results indicated a statistically significant positive relationship between three essential amino 

acids (methionine, threonine, and tryptophan) and local basis values in the quarters 

corresponding with and just following the release of the annual quality reports.  Protein content 

was found to have little to no effect upon local basis values when considered with the amino acid 

measurements. 

Key Words: soybean quality, origin basis, principal components analysis, panel regression, 

hedonic modeling. 

 

Introduction 

There has been substantial growth and changes in the production of soybeans within North 

America over the past 20 years.  Soybean production area has grown northwesterly of traditional 

producing regions.  For illustration, area planted in North Dakota has grown from 640,000 acres 

in 1995 to 2.9 million acres in 2005 and 5.8 million acres in 2020 (USDA-NASS, 2021).  North 

Dakota ranked 9th in U.S. soybean production in 2019 (Jantzi, Hagemeister, and Krupich, 2020), 

and ranked 9th in value of soybean exports in 2017 (USDA-ERS, 2021).  Similar changes are 

occurring with increased production in Canada.  This growth has been driven by a number of 

factors including improved technology relative to cereals (notably but not limited to genetic 

modification), changes in the length of growing season (i.e., days between last spring frost and 

first fall frost), strong growth in demand driven primarily by China, and the adoption of more 

efficient logistical systems favoring the Pacific Northwest (PNW) export market, among others.  

North Dakota is one of the primary origin markets for PNW soybeans. 

Coinciding with this growth has been an increase in quality heterogeneity.  Soybeans grown in 

the northern Midwest region (including North Dakota) have historically tended to have lower 

and more variable protein levels when compared to soybeans from other regions of the United 

States (Breene et al., 1988; Hurburgh et al., 1990); however, in recent years the gap has 

narrowed (Naeve and Miller-Garvin, 2019).   

Additionally, the current domestic marketing system for soybeans has failed to widely adopt a 

more differentiated (e.g., specifications, testing, premiums and discounts for quality deviations, 

segregation, blending, etc.) procurement strategy such as is common in other crops such as wheat 

(Hertsgaard, Wilson, and Dahl, 2019).  Most soybeans are bought and sold on grades, and some 
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buyers may place a limit on protein levels.  This is notwithstanding that specific levels of 

essential amino acids (EAA) are required by many soybean end-users, including the very large 

Chinese export market (Wilson, Dahl, and Hertsgaard, 2020). 

The combination of greater quality variability and demand specifications results in a high degree 

of uncertainty for buyers regarding end-use quality.  As a result, it is becoming more common 

for soybean buyers to apply discounts to broad purchase areas.  As an example, it is common for 

Pacific Northwest (PNW) soybeans to be discounted up to 40 cents per bushel relative to the 

U.S. Gulf on a China delivery basis (Wilson, 2016).  Other buyers preclude specific origins (e.g., 

PNW) due to their perception of historically lower protein levels. 

For years, end-users have used crude protein content as a non-grade measure of soybean quality, 

particularly as a proxy for the livestock feed use value in soybean meal.  However, recent studies 

have found crude protein to be a poor predictor of overall feed quality of soybean meal 

(Ravindran, Abdollahi, and Bootwalla, 2014).  In particular, lower crude protein soybeans tend 

to have a higher proportion of the five most critical essential amino acids (EAA) including 

lysine, cysteine, methionine, threonine, and tryptophan that are critical for livestock digestibility 

when compared to higher crude protein soybeans (Thakur and Hurburgh, 2007; Medic, Atkinson, 

and Hurburgh, 2014). 

Despite the lack of differentiated marketing practices regarding value in soybeans, buyers are 

aware of quality differentials and may procure accordingly.  For the past 15 years, the U.S. 

Soybean Export Council (USSEC) and the North Dakota Soybean Council (NDSC) have 

collected soybean quality data (including protein and amino acid content) by USDA Crop 

Reporting Districts (CRD’s).  This data is released in a summary report on an annual basis 

(Northern Crops Institute, 2019).  The report is generally released to the public during January / 

February following harvest.  In addition to these reports, some crushing firms and/or handlers 

develop their own internal geographic profiles of soybean end-use quality.  Since this data is 

available, it may impact the local soybean basis values.  Explicit premium/discount schedules for 

protein and essential amino acid content are not reported at terminal markets.  Consequently, it is 

likely that price differentials would be reflected in the origin basis levels.  The hypothesis is that 

protein and EAA conscious buyers would be able to view this public data on a regional basis and 

adjust their local price (basis) bids in order to acquire the desired quality of soybean. 

The purpose of this paper is to develop an econometric model to estimate the impacts of quality 

variability on regional basis values in soybeans.  Specifically, we develop a hedonic model and 

estimated using cross-sectional, time series panel dataset covering 8 North Dakota CRD’s over a 

period of 10 years (2009/10 to 2018/19) for a total of 80 observations.  The data includes quality 

observations on protein content and five essential amino acids (cysteine, lysine, methionine, 

threonine, tryptophan). In addition, this data was supplemented with soybean basis data (weekly) 

within each CRD.  To control for external effects, additional data on PNW export basis (to 

control for international market effects), secondary car values (to control for transportation cost 

effects), and nearby futures spreads (to control for domestic supply/demand factors) were also be 

included in the dataset.   

Using the dataset, five panel regression models were identified and estimated: one using 

marketing year averages and four using quarterly averages (to account for seasonality).  Principal 
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components analysis (PCA) was applied to the five EAA variables to reduce the number of 

variables in the panel regression and to control for the strong presence of multicollinearity in the 

EAA variables.  The dependent variable in each regression was the average local basis value 

with quality (EAA and protein) and control variables (to account for additional market and 

logistics factors) as the independent variables.  Coefficient signs and t-tests were used to test for 

the significance of the quality (protein and EAA) variables with regards to their impact upon the 

local basis levels. 

This paper has two major contributions.  One is that despite the importance of quality variability 

and buyer demands, in addition to a multitude of technical studies, there have been few 

economic studies on how the market values these non-grade quality attributes.  Second, the 

model specified in this paper builds upon the hedonic modeling literature, which historically has 

mostly been applied to cereals and other crops, by estimating hedonic market values in soybeans. 

Background and Previous Studies 

Soybean quality has been analyzed in recent years from both a livestock feeding (Mourtzinis et 

al., 2018) and human food (Sudarić, 2020) basis.  In the United States, quality variability from a 

protein perspective (Breene et al., 1988; Hurburgh et al., 1990) has been well documented as 

soybean production expanded into the northernmost states of the Midwest region.  The protein 

variability issue was heightened in 2017 when the U.S. soybean crop had lower protein content 

across all regions and drew concern for meeting the par delivery requirements for CBOT 

soybean meal futures along with shifting Chinese demand away from the United States and 

towards Brazil (Plume, 2017; Plume, 2018). 

It is important to note that, for the 2018/19 to 2020/21 marketing years, exports are projected to 

account for approximately 45% and 27% of total use by volume for U.S. raw soybeans and 

soymeal respectively (Wilson, Golden, and Hubbs, 2021).  According to the Soy Transportation 

Coalition (2017), the Pacific Northwest (PNW) comprised approximately 24.2% of total U.S. 

soybean exports (by volume) in 2017 – second to the U.S. Gulf at a 60.2% share.  Much of the 

growth in the PNW soybean export market can be attributed to the growth in prominence of 

China as an importer of U.S. soybeans.  In 2014, China accounted for 60.7% of U.S. soybean 

exports (by volume), making it the largest and most dominant export destination for U.S. 

soybeans (Hart and Schulz, 2015).   

The existing marketing practices for soybeans have not fully adapted to the impacts of non-grade 

quality variability.  Most purchases of soybeans at origin country elevators are normally based 

solely on USDA grade factors with testing and segregation by non-grade quality factors more the 

exception rather than the rule (Wilson, 2016).  However, due to concerns of the lower protein 

level, some end-use buyers have started adding clauses regarding none-grade quality deviations 

to their purchase contracts.  The primary origins tributary to the PNW export market are 

primarily located in the regions known for producing lower protein soybeans.  Therefore, many 

quality conscious end-use buyers have avoided purchasing soybeans from the PNW.  As a result, 

it is not uncommon in trading for PNW values to be a discount to the US Gulf, which is normally 

at a discount to Brazil, for quality reasons (Wilson, Dahl, and Hertsgaard, 2020). 
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Protein and EAA measures are quality attributes and knowing and/or limiting their values is 

important to buyers.  Marketing practices for soybeans differ from other agricultural 

commodities (e.g., wheat, durum, barley and other cereals) in which important attributes are 

measured and are contract terms throughout the marketing system (Wilson and Dahl, 2009).  As 

examples, in the case of hard wheats it is common to specify grade, and inter-grade limits on 

individual grade factors, protein, color, falling number, vomitoxin, etc.  These are measured 

throughout the marketing system and provide important signals to all market participants.  These 

signals have impacts on grower agronomic decisions (variety choice, plating time, fertilizer etc.), 

handlers on segregation and shipping, to end-users, in addition to breeders.  These are important 

signals to the entire marketing system.  Similar practices have not yet emerged in the soybean 

sector. 

Quality Sourcing Strategies for Soybeans 

The more recent studies on the economics of soybean quality include Hertsgaard, Wilson, and 

Dahl (2019) and Wilson, Dahl, and Hertsgaard (2020) which addressed issues related to 

alternative specifications for soybean in order to achieve end-use quality.  This was premised 

that most buyers specified protein or may not even do that.  They developed a model to 

determine the optimal testing strategy, including costs and risks.   

These studies were prompted in part due to the common industry practice of addressing protein 

deficiencies by purchasing shipments from different origins and blending them to meet end-use 

requirements.  In this case, exporters would buy shuttle trains of soybeans from North Dakota, 

typically at a lower delivered cost; and blend them with higher-cost, higher-protein soybeans 

from Nebraska.  Alternatively, foreign importers can (and do) buy simultaneously from the PNW 

and US Gulf and blend at the import destination.  

This strategy was evaluated in an extended model (Wilson, Dahl, and Hertsgaard, 2020) that is 

similar to models previously developed to examine wheat quality strategies (Wilson, 1989; 

Wilson and Dahl, 2006; Wilson, Dahl, and Jabs, 2007; Wilson and Dahl, 2009).  Results 

indicated that buyer risk can be reduced from 4.42% to 0.25% (interpreted as the probability of 

not meeting the buyer requirements) by testing and blending PNW shipments with a share from 

the US Gulf.  This results in a monumental strategy of managing logistics and timing, but it is a 

practice.  

Finally, given the growth of blockchain and its potential applications to agriculture it may be 

possible to mitigate some buyer risks through use of that technology.  Lakkakula, Bullock, and 

Wilson (2021) analyzed the benefit of using blockchain smart contracts to mitigate asymmetric 

information between a PNW buyer and a North Dakota origin seller regarding the protein content 

of a soybean shipment for export.  A decision tree model that captured the effects of asymmetry 

of information between the buyer and seller was developed.  Results indicated that blockchain 

could effectively reduce and mitigate the asymmetry of information which was previously a 

barrier to completing the transaction, resulting in accrued price premiums to the seller.    
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Hedonic Modeling of Quality Characteristics 

The specification used in this study builds on the literature of hedonic pricing models (sometimes 

referred as the input characteristics model).  These have a long history in economics (Lancaster, 

1966) and in agricultural economics (Ladd and Martin, 1976; Ladd, 1978).  Ultimately the goal 

of this specification is to determine the marginal value of a change in a product attribute using 

regression analysis.  In general, the model is of the form 𝑃 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛, 𝐘) where P is 

price, Xi are quality attributes, and Y are all other factors. The regression coefficients of the Xi 

(𝛽𝑖) represents the marginal value of quality attribute i. 

This type of market valuation is very important in agriculture.  The hedonic value of attributes 

impacts growers with regards to agronomic decisions, buyers and handlers with regards to 

segregation and blending, and breeders with regards to trait selection.  For many commodities it 

was a historically held view that the market doesn’t pay for quality attributes.  Therefore, the 

historical focus of breeding efforts was on increasing yields, and this has been the case 

historically for soybeans.  If a hedonic value can be attributed to a quality characteristic, it can be 

included in breeding targets. 

Hedonic models have a long history in the agricultural economics literature.  These include 

applications in malting barley (Wilson, 1984), wheat (Wilson, 1989; Espinosa and Goodwin, 

1991), international wheat (Ahmadi-Esfahani and Stanmore, 1995), and rice (Brorsen, Grant, and 

Rister, 1984) among others.  In some cases, these commodities have explicit premiums (e.g., 

protein in wheat) in which case, the use of hedonic econometric analysis is not so appropriate.  

However, hedonic analysis is particularly important for attributes that are not measured and for 

which there are implicit prices (e.g., location of production, variety in malting barley, etc.).  

Our approach builds on these models.  Specifically, we seek to estimate the hedonic value of 

some characteristics not normally measured in the marketing system.  These include protein, as 

well as the essential amino acid (EAA) attributes, which are important and when information 

becomes available, there is an implicit value reflected in its price. 

Data and Methodology 

For crop quality and local basis, the dataset is comprised of observations across 8 North Dakota 

Crop Reporting Districts (CRDs) and covering 10 marketing years from 2009/10 through 

2018/19 for a total of 80 observations.  The soybean marketing year covers the months from 

September through the following August.  A map of the North Dakota CRDs is in Figure 1 

(Appendix A). 

The soybean crop quality data includes measurements of the percentage (dry matter basis in 

decimal format) of five essential amino acids (cysteine, lysine, methionine, threonine, and 

tryptophan) that were identified as important in feed rations by Hertsgaard, Wilson, and Dahl 

(2019) along with the percentage (13% moisture basis in % format) of protein.  These values 

were obtained from annual North Dakota Soybean Quality Survey reports produced for the North 

Dakota Soybean Council by the Northern Crops Institute and the University of Minnesota.  This 

data is summarized by North Dakota CRDs with the exception of the Southwest district (due to 

insufficient soybean production). 
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A timeseries boxplot (distribution across CRDs) summary of the soybean quality data is 

illustrated in Figure 2.  The 2009 crop year was characterized by an exceptionally low level of 

cysteine and lysine with high levels of methionine and threonine.  The growing season was 

characterized by delayed spring planting due to wet weather followed by frost damage due to a 

rain delayed harvest (Jeradechachai and Tulbek, 2010).  The 2014 crop year had exceptionally 

low levels of all amino acids.  This was another year characterized by a late planted crop with 

cool, wet conditions prevailing throughout the growing season (Miller-Garvin, Orf, and Naeve, 

2014).  The 2015 crop year shows a structural shift to a higher average protein level for all ND 

soybeans.  This was likely due to the release of a new higher protein variety of soybean 

(ND1406HP) by North Dakota State University (2014). 

For local basis, a single country elevator location was chosen within each CRD based upon 

availability of data. Table 1 (Appendix B) shows the chosen locations for each of the 8 CRDs.  

The basis data were from DTN ProphetX (in $ per bushel format).  

To control for other macro factors that might influence local soybean basis, additional data was 

gathered on export basis (PNW in $/bushel), railroad tariffs and fuel surcharges (from 

Jamestown, ND to PNW in $/railcar), secondary railcar market values (in $/railcar), and the 

nearby soybean futures spread (1st deferred minus nearby price in $/bushel).  The export basis 

were daily observations of ‘track’ values from TradeWest Brokerage and were used for their 

influence (representing international market factors) upon local basis values.  The railroad tariff 

rate (to PNW), were obtained from the Burlington Northern Santa Fe railroad website.  The fuel 

surcharge, and secondary railcar market values were weekly observations and were from 

TradeWest Brokerage.  These were included due to their direct impact on the local basis.  The 

soybean futures price data was daily observations derived from DTN ProphetX and the nearby 

spread was used as a proxy for the influence of current domestic demand upon the local basis. 

All of the basis, price, and transportation data were aggregated into marketing year and quarterly 

averages were derived.  The quarterly averages were used to analyze the potential seasonal 

effects upon the origin basis.  For example, the first quarter (Q1) represents the average of the 

daily or weekly observations across the months of September through November (i.e., first 

quarter of the marketing year), while Q2 represents the average across December through 

February, and so forth.  The soybean quality data is released once each year and typically the 

report is published in late January / early February following the harvesting of the crop. 

Principal Component Analysis of Quality Data 

Table 2 shows the Spearman rank-order correlation among each of the five essential amino acids 

and protein content by CRD over the 10-year study period.  Only one value was found to be 

significant (with tryptophan in the Southeast CRD) out of the 40 comparisons.  Therefore, 

protein was treated as a separate quality factor in each of the regression models.  This result is 

also important as it illustrates that protein would be a poor proxy for end-use performance in 

purchasing strategies. 

To test for multicollinearity in the amino acid data, variance inflation factors (VIF) were 

calculated on the amino acid percent data in column-wise format sorted first by CRD and then by 

marketing year.  Figure 3 shows the estimated VIF factors for each of the five amino acids.  
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Values greater than 10 generally indicate the present of multicollinearity in the series data.  Four 

of the five amino acids had VIF values greater than 10 which is indicative of multicollinearity in 

the data. 

To account for the multicollinearity in the amino acid variables and also as a data reduction 

technique, principal components analysis (PCA) was applied to the sorted data for the five amino 

acids using the XLStats (Addinsoft, 2020) statistical analysis software.  From the analysis, two 

component factor variables (F1 and F2) were retained which accounted for 97.56 percent of the 

total variability in the five series.  Table 3 provides a summary of the eigenvector weightings, 

correlations, percent contribution, and squared cosines for factor variables. 

The eigenvectors represent the linear weights applied to each amino acid variable to construct the 

principal component factor variable.  The correlation listed is the Pearson correlation between 

the amino acid variable and the factor variable.  The contribution percentage shows what 

percentage of the factor variable is represented by each amino acid variable.  For F1, it is evenly 

represented between all of the amino acids except for cysteine which is highly represented in the 

F2.  The squared cosine essentially shows what percentage of the variability of each amino acid 

is represented by each of the factor variables.  Note that they don’t necessarily sum to one since a 

small amount of variability may be in the discarded factor variables (F3 through F5). 

Figure 4 shows a correlation graph of each amino acid with the two retained factor variables.  

The first factor variable (F1) represents 80.32 percent of the total variability and is positively 

correlated with all five amino acid variables with lysine having the highest correlation.  The 

second factor variable (F2) is most positively correlated with cysteine and also has a positive 

correlation with lysine.  It has a negative correlation with methionine and threonine and near zero 

correlation with tryptophan. 

Conceptual Model 

To determine the impact of non-grade soybean quality factors upon North Dakota origin basis, 

the following panel regression model was estimated: 

 𝑏𝑖𝑡 = 𝛼 + 𝐱𝑖𝑡𝛽 + 𝐳𝑡𝛾 + 𝑐𝑖 + 𝑢𝑖𝑡 , (1) 

where bit is the average basis observed at origin i and marketing year t, xit is the observed quality 

panel data (amino acid factor variables and protein), zt is the observed macro factor control 

variables (PNW basis, rail shipping costs, secondary railcar values, and nearby futures spread) 

that only vary by marketing year, ci is the unobserved panel (regional) effect, and uit is the 

equation residual term.  The β in equation 1 represent hedonic values and indicate the change in 

basis value for a unit change in the associated quality variable.  In this study, the form (pooled 

OLS, random effects, or fixed effects) of the regression model is identified and first estimated 

using the marketing year average for t.  To account for seasonal effects, the identified model is 

then estimated using quarterly averages for t which results in a total of five regression models 

(i.e., marketing year, Q1, Q2, Q3, and Q4) estimated. 

To identify the form of the panel regression model, a series of tests were conducted.  First, a 

modified Wald test for groupwise heteroscedasticity (H0: 𝜎𝑖
2 = 𝜎2 for all 8 regions) was applied.  
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The test statistic is distributed as chi-squared with 8 degrees of freedom.  Rejection of the null 

hypothesis indicates the presence of heteroscedasticity.  The test was applied to the fixed effects 

regression of equation 1 using the xttest3 procedure in Stata (Statacorp, 2021).  If groupwise 

heteroscedasticity was detected, the remaining tests and the final regressions were conducted 

using the vce(robust) option in Stata. 

The second test applied was the Breusch and Pagan (1980) lagrange multiplier test to determine 

if pooled OLS is the correct model specification.  Rejection of the null hypothesis indicates that 

either the random or fixed effects models would be preferred over pooled OLS.  To test this 

hypothesis the Stata xttest0 procedure was applied to the estimated random effects model. 

Normally, the Hausman (1978) specification test can be utilized to determine the appropriate 

form (i.e., random or fixed effects) of the panel regression model. Wooldridge (2010) indicates 

that models of the form of equation 1 can be estimated by either random or fixed effects but 

notes that the Hausman test cannot be employed for models with regressors that only change 

with time. This problem is due to singularity in the asymptotic variance matrix of the difference 

between the random and fixed effects estimators.  

Instead, this study utilizes an alternative test proposed by Mundlak (1978) which proposes 

estimating the following augmented model specification to avoid the singularity issue: 

 𝑏𝑖𝑡 = 𝛼 + 𝐱𝑖𝑡𝛽 + 𝐳𝑡𝛾 + 𝐱̅𝑖𝛿 + 𝑐𝑖 + 𝑢𝑖𝑡, (2) 

where the 𝐱̅𝑖 represent the average of the panel quality variables across all time periods. Equation 

2 was estimated using random effects GLS estimation and a Wald chi-square test of the null 

hypothesis that the 𝛿𝑘 = 0 for all k quality variables was conducted.  Rejection of the null 

hypothesis would indicate that the fixed effects model was preferred over the random effects. 

A summary of the panel regression identification tests is given in Table 4.  The modified Wald 

test supports the presence of groupwise heteroscedasticity in the panel dataset; therefore, models 

were estimated using the robust error correction option in Stata.  The Breusch and Pagan 

lagrange multiplier test rejects the use of the pooled OLS estimator.  Finally, the Mundlak 

augmented regression test supports using the fixed effects estimation over random effects.  

Therefore, the estimated models presented in the next section were estimated using the xtreg 

(i.e., panel regression) procedure in Stata with the fe (i.e., fixed effects) and vce(robust) (i.e., 

robust error correction) options activated. 

Estimation Results 

The fixed effects panel regression results are presented in Table 5.  The models are presented 

using the marketing year (MY) and quarterly (Q1-Q4) averages for the dependent (origin basis) 

and macro variables (transportation costs, PNW export basis, and nearby futures spreads).  The 

quality variables are reported once per year, so they remain the same across all regressions.  

For the explanatory variables, F1 and F2 represent the amino acid factor variables (extracted via 

principal components), Protein is the average protein content, Tariff_FSC is the sum of the 

railroad tariff and fuel surcharge from Jamestown ND to PNW, PNW_Basis is the export basis 
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for the Pacific Northwest (PNW) market, Sec_Car_Value is the secondary railcar market value, 

and NB_Fut_Sprd is the nearby CBOT soybean futures price spread.  Coefficients followed by 

three stars are significant at the 99% confidence level, two stars at the 95% confidence level, and 

one star for the 90% confidence level. 

The coefficient estimates on the amino acid factor variables are both highly significant for the 

two quarters corresponding and immediately subsequent to (Q2 and Q3) the release of the North 

Dakota Soybean Quality Survey reports.  Both coefficients are significant at the 99% confidence 

level with the dominant factor (F1 with 80.3% of total amino acid variability) having a positive 

sign with the secondary factor (F2 with 17.2% of variability) having a negative sign.  Taken 

together, these would lend support to the hypothesis that the release of essential amino acid 

information has a statistically significant effect upon the regional North Dakota basis values.  

The positive sign on the major factor coefficient indicate a general positive correlation between 

the essential amino acid content and the local basis values.  These coefficients are also 

significant and of the same sign for the overall marketing year average basis value. 

The regression results indicate that protein has only a marginal, but positive, impact upon local 

soybean basis, particularly in the first two quarters of the marketing year.  For the most part, the 

quality variables have a negligible impact upon regional soybean basis in the 1st and 4th quarters 

of the marketing year.  The low overall R2 value for the Q4 equation indicates that the model has 

very little explanatory power and is probably due to the fact that most soybean shipments have 

occurred in the earlier quarters of the marketing year. 

In addition to essential amino acid factors, the PNW basis and secondary railcar market values 

have highly significant coefficient values and are of the correct sign.  A large percentage of 

North Dakota soybeans flow into the Pacific Northwest export market which has a large 

influence upon local basis values and prices.  Previous research (Bullock and Wilson, 2020; 

Wilson, Bullock, and Lakkakula, 2020) has shown that secondary railcar market values vary 

more frequently when compared to rail tariffs and therefore, have a greater influence upon basis 

values for grains and oilseeds. 

In terms of the nearby futures price spread, the results appear to be mostly insignificant with the 

exception of Q3.  Bullock and Wilson (2020) found that the nearby futures spread had a strong 

and statistically significant influence upon the PNW export basis; therefore, it is likely that the 

futures spread effect is likely picked up through the export basis coefficient. 

To determine the impact of each of the individual essential amino acids in the regression models, 

the eigenvectors from Table 3 were used to calculate the coefficient values and coefficient 

standard errors.  The formula for the individual amino acid coefficients was: 

 𝜑̂𝑗 = 𝜀𝑗1 ∙ 𝛽̂𝐹1 + 𝜀𝑗2 ∙ 𝛽̂𝐹2, (3) 

where 𝜑̂𝑗 is the estimated regression coefficient (hedonic value) for amino acid j, 𝜀𝑗𝑘 is the 

eigenvector factor loading of amino acid j upon factor k, and 𝛽̂𝐹𝑘 is the estimated regression 

coefficient for factor k in Table 5.  The formula for the individual amino acid regression 

coefficient standard errors was: 
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𝑠𝑒(𝜑̂𝑗) = √𝜀𝑗1

2 ∙ 𝑠𝑒(𝛽̂𝐹1)
2
+ 𝜀𝑗2

2 ∙ 𝑠𝑒(𝛽̂𝐹2)
2
, 

(4) 

where se(.) is the regression coefficient standard error. 

Table 6 shows the converted regression coefficients and t-statistics (along with significant level) 
for the individual amino acids.  The results show that the primary positive impact upon origin 

basis is through methionine, threonine, and tryptophan which are all significant at the 99% 

confidence level for the MY, Q2, and Q3 regressions.  Cysteine has a lesser (from a statistical 

significance perspective) but negative effect upon origin basis.  Lysine appears to have an 

insignificant effect in the three regressions.  Cysteine and lysine both have a positive and 

significant impact in the Q1 regression and a lesser but negative effect in the Q4 regression.  In 

the Q1 regression, methionine and threonine have a marginally significant (90% confidence 

level) negative impact upon the origin basis. 

The negative coefficient value for cysteine may be due to the fact that it is already produced 

naturally by animals and humans (Karau and Grayson, 2014).  Methionine, like cysteine, is one 

of the sulfur amino acids and is not produced naturally by animals and humans but must come 

from external sources.  Adding cysteine to a ration can reduce the requirement for methionine; 

however, both amino acids are generally supplied at a fixed ratio in broiler (Pacheco et al., 2018) 

and other animal rations.  Part of the reason for this is that methionine is converted into cysteine 

in the digestive process and too much of the sulfur amino acids can have a negative impact upon 

animal growth (Bin, Huang, and Zhou, 2017). 

Besides cysteine, the other four amino acids (methionine, lysine, threonine, and tryptophan) are 

considered the main fermentative amino acids in animal feed and human nutrition (Karau and 

Grayson, 2014).  With regards to the insignificance of the regression coefficients for lysine in the 

MY, Q2, and Q3 regressions; perhaps the best explanation is that lysine competes with threonine 

and methionine for synthesis through the aspartate biosynthesis pathway in cereal and legume 

production (Hacham et al., 2007).  Also, there is evidence of optimal ratios of methionine to 

lysine in lactation rations (Wei et al., 2019). 

Summary and Conclusions 

Over the past 20 years, North Dakota soybean production has grown significantly due to 

improved seed technology with the advent of GM varieties (which has displaced non-GM cereal 

production), climate change, better logistics, and the advent of China as a major importer of 

soybeans out of the Pacific Northwest (PNW) export market.  Coinciding with this growth has 

been an increase in quality heterogeneity, particularly with respect to non-grade factors such as 

protein and essential amino acid (EAA) content.  As these quality issues have become more 

prominent, it has induced efforts by the U.S. Soybean Export Council (USSEC) and state-level 

soybean organizations to begin annual reporting of non-grade quality factors.  In North Dakota, 

this effort began with the 2009 crop year and includes quality information summarized by Crop 

Reporting District (CRD). 
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The main purpose of this study is to examine and measure the impact that this information may 

have on North Dakota origin basis values.  The hypothesis is that buyers monitor the release of 

this summary information and adjust their local basis bids accordingly in order to source the 

desired quality of soybean in terms of protein and EAA.  This “origin targeting” strategy has 

been used historically in wheat procurement (Wilson and Dahl, 2009) to acquire the desired 

quality. 

In this study, panel quality data on protein content and five essential amino acids (cysteine, 

lysine, methionine, threonine, and tryptophan) was collected from 8 North Dakota CRD’s over 

10 marketing years (2009/10 through 2018/19).  Within each CRD, a local elevator was chosen 

and weekly basis data was collected over the same time period.  To control for other non-market 

factors, weekly data was also collected on the PNW export basis, transportation costs from 

Central North Dakota to PNW (tariff, fuel surcharge, and secondary railcar market value), and 

the nearby CBOT soybean futures spread. 

Analysis of Spearman rank-order correlations between protein content and each of the 5 EAA’s 

indicated no significant relationship; therefore, protein was considered as a separate quality 

factor in the panel regression models.  To preserve degrees of freedom and due to the presence of 

strong multicollinearity, the five EAA measurement variables were condensed down into two 

factor variables using principle components analysis (PCA).  The two factor variables explained 

over 97% of the total variability in the five EAA variables.  The first factor variable (80.3% of 

variability) has a strong correlation with all five EAA variables with the second factor variable 

(17.2% of variability) had positive correlation with cysteine and lysine, and negative correlation 

with methionine and threonine, indicating a tradeoff in production between the four factors 

(tryptophan had a near zero correlation with the second factor). 

A total of five panel regression models were estimated – one for the marketing year (MY) 

average of the weekly origin basis and control factor variables, and four quarterly (Q1, Q2, Q3, 

and Q4) average models to measure seasonal effects related to the timing of the crop harvest and 

release of the quality report information.  To identify the correct panel regression model to 

estimate, a series of three tests were performed.  First, groupwise (between CRD’s) 

heteroscedasticity was tested using a modified Wald test.  The null hypothesis was rejected at the 

99% level for all five models supporting the presence of groupwise heteroscedasticity.  

Therefore, subsequent modeling used robust estimators. 

The Breusch and Pagan (1980) lagrange multiplier test was then applied to test the null 

hypothesis that the pooled OLS estimator was the correct model (over fixed and random effects).  

This was rejected at the 99% confidence level for all five models.  Due to the presence of panel 

invariant time series variables (control variables) in the independent data set, the Hausman 

(1978) specification test cannot be correctly applied due to singularity issues in the asymptotic 

variance matrix of the difference between fixed and random effects estimators.  Therefore, an 

alternative augmented regression test first proposed by Mundlak (1978) was applied to test 

between fixed and random effects estimators.  The test results strongly supported (95% 

confidence level or higher) the use of the fixed effects over the random effects estimator. 



12 

 

The panel regression results indicated that the two EAA factor variables were highly significant 

(95% or better) in the MY, Q2, and Q3 models with a positive value for the first EAA factor and 

a negative value for the second factor.  The Q2 and Q3 models are notable in that they 

correspond with the annual time period corresponding (Q2) and just following (Q3) the release 

of the annual soybean quality report.  Protein content had the correct anticipated sign (positive) 

in all five models; however, the coefficient was only statistically significant (90% confidence 

level) in just the Q1 and Q2 models.  The PNW basis (representing influence of export market) 

was highly significant (99% confidence level) in all five models and had the correct positive 

coefficient sign.  Additionally, the secondary railcar market value was also highly significant 

(99% confidence level) in all five models and also had the correct negative coefficient sign.  The 

fraction of the variance explained by panel (CRD location) effects was 60% or higher in the MY, 

Q2, and Q3 regression mode. 

The PCA eigenvectors were used to convert the coefficient and standard error values from the 

two EAA factors into equivalent values for the five EAA values.  The results indicated that three 

(methionine, threonine, and tryptophan) of the five EAA variables had a significant (99% 

confidence level) positive impact upon the average origin basis for the MY, Q2, and Q3 models 

while cysteine had a significant (95% confidence level or better) negative value in all three 

models.  Lysine was insignificant in the three models and had mixed results in the Q1 (positive at 

95% level) and Q4 (negative at 95% confidence) models.  Cysteine also had mixed results in the 

Q1 (positive at 99%) and Q4 (negative at 90%) models while methionine and threonine had 

insignificant results in Q4 and negative (90% significance) results in Q1.  Tryptophan was 

insignificant in the Q1 and Q4 models. 

The results of this study strongly support the hypothesis that the release of protein and EAA 

quality data has had a significant impact upon North Dakota soybean origin basis values.  In 

particular, increased values of three of the EAA’s (methionine, threonine, and tryptophan) 

correspond to increases in the hedonic value of local soybean prices as measured by stronger 

origin basis bids.  Cysteine appears to have a negative hedonic value and this is likely due to two 

factors: (1) the substitution effect between cysteine and methionine / threonine in production as 

evidenced by the second EAA factor variable, and (2) the fact that cysteine is already produced 

naturally by animals and humans with methionine converted into cysteine by animals and 

humans through the digestive process.  This increase in the sulfur amino acids (cysteine and 

methionine) has been shown to eventually reach a level that can have negative implications for 

animal growth.  Lysine also competes with methionine and threonine in soybean production (as 

evidenced by the second factor) through the aspartate biosynthesis pathway in cereal and legume 

production. 

The fact that hedonic values are significant is important to the evolution of the marketing system.  

One would expect that overtime, these could become more important features of the marketing 

system and pricing.  More transparent hedonic values would have a positive impact throughout 

the marketing system.  Growers would be impacted in variety and agronomic choices; handlers 

would be impacted by segregation and blending, as well as in pricing; end-users would be better 

able to reflect their values in purchasing strategies; and breeders could incorporate values into 
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their breeding targets.  None of these would be pertinent so long as the hedonic values are non-

transparent. 

Of moderate surprise was the relatively lower significance of protein content in the regression 

results.  However, as has been noted in recent published studies (Hertsgaard, Wilson, and Dahl, 

2019; Wilson, Dahl, and Hertsgaard, 2020) soybean buyers have generally looked at blending 

soybeans from other higher protein producing regions with lower protein soybeans from the 

northern states (such as North Dakota) to achieve the desired quality characteristics.  Also, there 

is evidence that protein conscious export buyers would generally prefer the U.S. Gulf over the 

PNW export market as evidenced by market discounts. 
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Appendix A: Figures 

 

Figure 1. Map of North Dakota Crop Reporting Districts (CRDs). 
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Figure 2. Time Series Boxplot of Soybean Quality Variables Across North Dakota CRDs. 
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Figure 3. Variance Inflation Factors (VIF) for the Amino Acid Variables (80 observations). 

 

 

Figure 4. Pearson Correlation of Amino Acid Variables with Factor Variables 
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Appendix B: Tables 

Table 1. List of Origin Elevators for Basis Data by Crop Reporting Districta 

 

 

Table 2. Spearman Rank-Order Correlation of Amino Acid Contents with Protein Level by CRD 

 

 

Table 3. Principal Components Analysis (PCA) Summary for Amino Acid Variables 

 

 

Crop Reporting District Origin Elevator for Basis Data

Northeast Cenex Harvest States, Edmore, ND

North Central BTR Farmers Cooperative, Leeds, ND

Northwest Berthold Farmers Elevator, Berthold, ND

East Central Arthur Companies, Page, ND

Central Fessenden Cooperative, Fessenden, ND

West Central Wilton Farmers Union, Wilton, ND

South Central South-Central Grain, Hague, ND

Southeast Farmers Elevator, Hankinson, ND

a
Southwest region excluded due to lack of available quality data.

CENT EC NC NW NE SC SE WC

Cysteine -0.1763 -0.1763 -0.3091 -0.2892 -0.1879 0.1758 -0.1763 -0.1515

Lysine -0.1879 -0.2121 -0.4012 -0.3780 -0.2485 0.2242 -0.0788 -0.1636

Methionine -0.1641 -0.0675 0.1785 -0.4771 0.2067 -0.1829 -0.0305 -0.2012

Threonine -0.0488 0.1398 0.1398 -0.0854 0.1758 -0.0608 0.0667 0.0732

Tryptophan -0.5915 -0.6403 -0.5671 -0.6177 -0.5106 -0.2857 -0.6565 -0.4788

Amino Acid

North Dakota Crop Reporting District (CRD)

a
Values in bold font are significant at the 95% confidence level.

F1 F2 F1 F2 F1 F2 F1 F2

Cysteine 0.344 0.776 0.689 0.721 11.81 60.26 0.474 0.519

Lysine 0.482 0.242 0.965 0.224 23.20 5.84 0.932 0.050

Methionine 0.461 -0.398 0.924 -0.370 21.28 15.85 0.855 0.137

Threonine 0.455 -0.425 0.911 -0.394 20.69 18.03 0.831 0.155

Tryptophan 0.480 -0.013 0.962 -0.012 23.02 0.02 0.925 0.000

Amino Acid

Eigenvectors Correlation Contribution (%) Squared Cosines
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Table 4. Summary of the Panel Regression Identification Tests 

 

 

Table 5. Fixed Effects Panel Regression Results with Origin Basis as Dependent Variable 
(t-statistics in parentheses) 

 

 

MY Q1 Q2 Q3 Q4

Groupwise Heteroskedasticity
a

420.06*** 174.77*** 39.63*** 38.85*** 210.12***

Breusch and Pagan (1980)
b

152.24*** 97.10*** 161.72*** 120.32*** 75.48***

Mundlak (1978)
c

26.12*** 32.12*** 69.42*** 74.21*** 9.76**

c
Mundlak augmented regression test (H0: Random Effects is correct model).  Distributed as χ2

(7).

Test

Model

a
Modified Wald test for groupwise heteroskedasticity (H0: σ i

2
 = σ

2
 for all i  = 1,…,8 groups). Distributed as χ2

(8).

b
Breusch and Pagan lagrange multiplier test (H0: Pooled OLS is correct model). Distributed as chi-bar(1).

MY Q1 Q2 Q3 Q4

Constant
-2.4237***

(-8.59)

-0.4399

(-0.85)

-2.3416***

(-5.82)

-4.3504***

(-6.26)

-2.322**

(-3.02)

F1
0.0250***

(5.22)

0.0145

(1.02)

0.0438***

(9.49)

0.0381***

(4.57)

-0.0115

(-1.42)

F2
-0.0640**

(-3.08)

0.0721**

(3.43)

-0.0858***

(-4.49)

-0.0908***

(-4.10)

-0.0927*

(-2.06)

Protein
0.0118

(1.46)

0.0184*

(2.20)

0.0090*

(1.91)

0.0147

(1.63)

0.0165

(1.07)

Tariff_FSC
0.0002

(0.30)

-0.0004***

(-4.22)

0.0001

(0.33)

0.0004*

(2.15)

-0.0001

(-0.11)

PNW_Basis
0.9250***

(8.05)

1.0180***

(6.84)

0.9633***

(5.38)

1.0033***

(12.59)

0.8008***

(3.53)

Sec_Car_Value
-0.0002***

(-6.42)

-0.0002***

(-7.08)

-0.0001***

(-5.42)

-0.0003***

(-7.29)

-0.0003***

(-3.58)

NB_Fut_Sprd
0.2785

(1.29)

-0.3842

(-0.82)

0.6294

(1.31)

0.3757*

(2.12)

0.1331

(0.35)

R
2
 (within groups) 0.626 0.705 0.861 0.808 0.167

R
2
 (between groups) 0.459 0.001 0.632 0.660 0.213

R
2
 (overall) 0.351 0.507 0.648 0.617 0.096

rho
a

0.674 0.551 0.693 0.607 0.496

a
Fraction of variance explained by group (location) effects.

Model

Explanatory Variable
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Table 6. Fixed Effects Regression Results with Factor Variable Eigenvector Conversions 
(t-statistics in parentheses) 

 

 

 

MY Q1 Q2 Q3 Q4

Cysteine
-0.0411**

(-2.53)

0.0609***

(3.57)

-0.0516***

(-3.45)

-0.0574**

(-3.29)

-0.0759*

(-2.16)

Lysine
-0.0034

(-0.62)

0.0244**

(2.86)

0.0004

(0.07)

-0.0036

(-0.54)

-0.0279**

(-2.41)

Methionine
0.0370***

(4.32)

-0.0220*

(-2.07)

0.0544***

(6.87)

0.0537***

(5.58)

0.0316

(1.72)

Threonine
0.0386***

(4.24)

-0.0240*

(-2.18)

0.0564***

(6.72)

0.0559***

(5.51)

0.0341

(1.75)

Tryptophan
0.0129***

(5.55)

0.0060

(0.88)

0.0221***

(9.93)

0.0195***

(4.85)

-0.0043

(-1.09)

Explanatory Variable

Model
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