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Microstructure and High-Frequency Price Discovery in

the Soybean Complex

Abstract

We develop a theoretical framework and propose a relevant empirical

analysis of the soybean complex prices cointegration relationship in a high-

frequency setting. We allow for heterogeneous expectations among traders

on the multi-asset price dynamics and characterize the resulting market be-

havior. We demonstrate that the asset prices autoregressive matrix rank and

the speed of reversion towards the long-term equilibrium are related to the

market realized and potential liquidity, unlike the cointegrating vector. Our

empirical application to the soybean complex, where we control for volatility,

supports our theoretical results when the price idleness of the different assets

is properly accounted for. Our analysis further suggests that the presence

of cointegration among assets is related to the time of day and the contract

maturities traded at a given time.

Keywords: Soybean; Futures market microstructure; Liquidity; Price discovery; High-

Frequency
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1 Introduction

Financial markets offer the opportunity for a wide variety of economic agents to express

their economic expectations. The resulting price-discovery process in these markets re-

flects the agents’ respective levels of information and investment capacities. In a sense,

Warren Buffett, CEO of Berkshire Hathaway, reaches the same conclusion, quipping that

’when you combine ignorance and leverage, you get some pretty interesting results’. In

the long run, we would expect less informed traders to leave the market due to poorer

investment performance. Conversely, we would expect greater diversity among economic

agents on a short to mid-term horizon.

Using a novel price cointegration framework, we examine how the short-term market

microstructure influences the price-discovery processes of multiple related assets, with an

application to the soybean complex. We extend this multivariate long-term price equilib-

rium model with a short-run microeconomic equilibrium framework which allows different

groups of agents to invest independently - or not invest at all - in individual cointegrated

markets. Our theoretical microstructure model establishes the link between information

heterogeneity, the assets’ traded volumes, and the strength of the cointegration relation-

ship at high-frequency level. Subsequently, using the high-frequency Limit Order Book

(LOB) data of the soybean complex, our empirical study confirms this theoretical model

by revealing a relationship between price cointegration and the traded or available vol-

umes in each individual asset’s LOB.

At the empirical level, great efforts have been made in the academic literature to

quantify the impact of commercial and non-commercial investors’ behaviours on market

prices by scrutinizing the Commitment of Traders (COT) report published on a weekly

basis by the CFTC (for instance Fishe et al. 2014, Büyükşahin & Robe 2014, Kang et al.

2020). However, these results are contingent on the CFTC’s investors’ classification and

the reports weekly frequency of publication. This paper chooses a different approach

using high-frequency LOB data, whereby the typology of investors submitting market or

limit orders is not pre-defined. Our approach utilizes both traded prices and aggregated

quantity data (i.e. daily traded volumes and limit order books’ daily average liquidity

measurements) to shed light on the relationship between price cointegration and the daily

4



realised or potential volumes1.

In the financial microeconomics literature, the types of investors are often differen-

tiated according to their respective levels of information and risk aversion. This litera-

ture has mainly focused on the agricultural and energy commodities markets, where a

wide spectrum of investor profiles, and thus information levels, generally interact. More

precisely, partially informed or uninformed traders rub shoulders with arbitragers and

manufacturers in these markets every day. While less informed traders are generally

assumed to be genuinely uninformed (when studied in a single market), these investors

will be considered partially uninformed in our model. By this we mean that they fo-

cus on a single asset without considering assets linked by cointegration relationships.

We could typically associate to this investor profile the commodity index traders or the

index-tracking ETFs who go long on a specific futures contract because of its appealing

liquidity, ignoring the less liquid cointegrated futures contracts. The well-known GSCI

index, for instance, only invests in soybeans futures contracts2 but does not include soy-

bean meal and soybean oil contracts3. As a result, this index is trading in and focusing

on a given market based on private or publicly available information without necessarily

considering the structural relationships of the physical assets. At best, such behaviour

leads to short-term asynchronicity among the cointegrated markets; at worst it could

lead to market inconsistencies, such as non-synchronous financial bubbles or even the

oft-decried financialization of commodities markets (Basak & Pavlova 2016, Shang et al.

2018).

The second group of investors considered here are the arbitragers. They play an

1Potential volumes are reflected by the depth of the LOB and defined by Albert S. Kyle (1985) as

the size of an order flow innovation currently required by the market participants to change the price of

a given amount.
2See also the S&P GSCI Index methodology document available from:

https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-gsci.pdf
3As of June 2021, the Bloomberg commodity index, formerly known as the Dow Jones-UBS Com-

modity Index, is invested in these three assets with long-only positions of about 5% in soybean, 2.3%

in soybean meal, and 2.9% in soybean oil. Thus, it does not observe the CME crush spread, nor the

proportions commonly accepted in the crushing industry. The Thomson Reuters Commodity Research

Bureau index only includes soybeans futures contracts.
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important role in the derivatives industry: enticed by a theoretical arbitrage-risk-free

gain, they reduce the basis volatility and force the prices of the underlying asset and

its derivatives to converge at maturity, consequently guaranteeing hedging efficiency by

mitigating any non-convergence risk (although storage frictions may lead to structural

non-convergence, Garcia et al. 2015). Nevertheless, this strategy of cash-and-carry (or

reverse cash-and-carry) arbitrage is generally deployed on a single-asset basis and usu-

ally remains within the arbitrager’s risk capacity (Hong & Yogo 2012, Acharya et al.

2013). Only the last group of investors is likely to consider joint equilibrium relationships

among multiple underlying assets in the physical markets: manufacturers. Unlike the

other groups of investors, the manufacturers, through their commercial activities, have

the capacity to build synchronous positions in the cointegrated physical markets and

eventually hedge their margin exposure through opposite trades in the associated futures

contracts (Li & Hayes 2022).

This activity at high frequency should ultimately coordinate futures prices and make

their cointegration materialize over a longer time horizon, such as a trading day. How-

ever, observing this cointegration relationship in a high-frequency setting turns out to be

challenging, given that microstructure noise4 as well as lagged information among agents

and markets disturb the latent joint price-discovery process (Janzen & Adjemian 2017,

Couleau et al. 2019). This makes price cointegration inference difficult for the econo-

metrician. To deal with microstructure noise and non-synchronicity among markets,

many statistical models have been considered in high-frequency price-dynamic modelling.

The state-space representation of the vector error correction model (VECM) described

in Seong et al. (2013) considers the Expectation Maximisation algorithm proposed by

Dempster et al. (1977) to cope with mixed-frequency or asynchronous data in cointe-

grated time-series models. More recently, Buccheri, Corsi & Peluso (2021) demonstrated

that this filtering methodology adequately deals with microstructure noise and the infor-

mation lag that exists among markets at the high-frequency level5. Employing a slightly

4The microstructure frictions can be associated to the bid-ask bounces, the discreteness of the price

grid but also the technique used to construct the high-frequency price dataset (Hansen & Lunde 2006).
5It is worth noting that as far as the price discovery process is concerned, other methods have been

considered in the economic literature to deal with prices staleness. For instance Janzen & Adjemian

(2017) use a combination of the respective assets information and component shares as proposed by
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different approach, our filtering model deals with the problems of price staleness and

idleness6. Our empirical study demonstrates that the soybean complex is significantly

cointegrated and close to the underlying physical relationships. To the contrary, a noise-

sensitive approach, such as Johansen’s inference method (Johansen 1995), yields incon-

sistent and unstable cointegrating vectors upon convergence in comparison with physical

relationships. Furthermore, our high-frequency analysis confirms the central role played

by realized and potential market liquidity in the assets prices multivariate dynamics,

in particular for cointegrated assets. This confirms Arzandeh & Frank (2019) findings

which emphasize the interest of considering LOB information in price discovery process.

To validate our cointegration framework, we indeed demonstrate that, contrary to the

cointegrating space, the crush-spread associated adjustment space turns out to be closely

related to market microstructure.

This paper is organised as follows: The second section is devoted to the theoretical

framework, which highlights the potential drivers of price cointegration. This theoretical

framework is rooted in the large Mixture of Distribution Hypothetis (MDH) and Differ-

ence of Opinion Literature. Starting from Epps & Epps (1976), our main contribution

is to develop a multi-market analysis with many potential participants. Consistent with

the synthesis of Behrendt & Schmidt (2021), we find a non-linear relationship between

volumes and prices. The third section describes the statistical methodologies retained to

test the stationarity of our price data and to identify price cointegration at an intraday

level. Furthermore, we contribute to the methodological literature by treating differently

price staleness and idleness as defined by Bandi et al. (2020). In addition, we propose an

adapted panel test to verify the intra-daily cointegration among asset prices in a high-

frequency setting. The fourth section provides a description of the soybean complex and

the retained data. Finally, our results are commented and analysed in the fifth section,

where we contrast our main cointegration results with those obtained through tradi-

tional methodologies that ignore issues associated with multivariate high-frequency data

set analysis (e.g. microstructure noise and non-synchronicity). We empirically test the

relationship between volume and the strength of the cointegration, add more potential

Yang et al. (2003).
6Staleness is defined according to Bandi et al. (2020) as the frequency of zero returns with a traded

volume associated whereas idleness corresponds to staleness but when trading activity is absent.

7



explanatory variables, and conduct several robustness checks. Our empirical results show

that volume in certain markets, especially soymeal, is significantly related to crush-spread

cointegration. We demonstrate how this relationship may affect the hedging efficacy of

different rollover approaches and provide a conclusion in the final section.

2 Theoretical Framework

Since the seminal papers of Epps & Epps (1976) and Tauchen & Pitts (1983), a large

and still living literature strives to model the relationship between time series of financial

prices and traded volumes7. Assuming certain market frictions or market microstructure

characteristics, these models boil down to first representing how information flows change

the price expectations of market participants. Then equilibrium rules lead to fluctuations

in volumes and asset prices. By and large, the existing academic contributions mainly

focus on univariate dynamics modelling (O’Hara 2015). In this article, we develop a multi-

asset theoretical model that takes into account long-term equilibrium relationships. By

taking into account heterogeneity in market participants’ expectations, our theoretical

framework sheds light on the short to mid-term dynamics of cointegrated time series

conditional on the market participants’ typology.

To a significant extent, our model, like the aforementioned literature, stresses the role

of information and tends to refute the rational-expectations assumption. For instance,

Fishe et al. (2014) show theoretically that the rational-expectations equilibrium implies

zero correlation between price and position changes, which is usually contradicted through

available data. To reproduce well-known empirical features of financial asset prices, the

literature has relied on the ”difference-of-opinion” hypothesis, whereby economic agents

agree to disagree on, for instance, public information. In the early paper by Tauchen

& Pitts (1983), the economic agents disagree in a linear manner on the expected price

of one commodity; by contrast, Epps & Epps (1976) formulate a non-linear disagree-

ment function around the expected price. Later, He & Velu (2014) extend the linear

approach of Tauchen & Pitts (1983) to a multi-asset settings approach by assuming that

certain market announcements impacting the common latent factors can jointly affect the

traded volume or the price of several assets, proportional to their respective latent factors

7Please refer to Behrendt & Schmidt (2021) for a literature review.
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loadings. However, in their model He & Velu (2014) do not consider the effect of belief

heterogeneity among participants while, as shown by Duchin & Levy (2010) through sim-

ulations, disagreement on expected prices or on the expected price variance-covariance

matrix has a significant impact on assets price and traded volume. In the same vein,

recent papers introduce market frictions (Darolles et al. 2017), heterogeneous discount

factors (Beddock & Jouini 2020), or a continuum of economic agents (Atmaz & Basak

2018). While all of these extensions provide richer relationships between price, volume,

and volatility, none have considered heterogeneous beliefs in a multivariate cointegrated

setting.

Our theoretical framework builds on the Epps & Epps (1976) framework. We consider

i = 1, . . . , n commodity markets and j = 1, . . . ,m potentially risk-averse economic agents.

Like many previous papers, we simplify the analysis by assuming CARA preferences, a

zero risk-free rate, and a finite horizon. Rather than expressing the inverse demand, we

start with the agents’ j demand for assets. With Qj,t−1 representing the (n× 1) vector of

demand of assets by agent j at time t− 1, Pt−1 the vector of asset prices at time t− 1, Sj

the expected price covariance matrix by agent j (assumed constant over time), ξj their

risk aversion (constant as well) and Xj,t−1 their expected final prices column vector for

the n assets at time t− 1, we obtain :

Qj,t−1 = (ξjSj)
−1(Xj,t−1 − Pt−1) (1)

This can be rewritten as :

Qj,t−1 = λj(Xj,t−1 − Pt−1) (2)

If an agent never participates in market i, this is reflected by a corresponding null

row i in the λj matrix.

At the equilibrium, we assume that
∑

j Qj,t−1 = 0. Then the economic agents receive

new information and process it into a new price expectation, so Xj,t−1 becomes Xj,t.

Agent j’s demand changes from period t − 1 to period t and likely creates a market

disequilibrium, which can be restored through appropriate price changes. From period

t− 1 to period t, we thus have :

Qj,t −Qj,t−1 = λj(Xj,t −Xj,t−1 − (Pt − Pt−1)) (3)
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or

Vj = λj(δj −∆P ) (4)

with ∆P = Pt−Pt−1, δj denoting the change in price expectations, and Vj the volume

traded by agent j.

Then we follow Epps & Epps (1976) in specifying the change in price expectations

as8:

δj|Pt−1 = δ̂ + αj(Pt−1)ABS(δ̂)(1/γ) (5)

with γ being a positive constant and αj a (n × n) matrix of strictly positive IID

random variables that potentially depends on current prices in nonlinear ways, while δ̂

corresponds to the average change of price expectations across economic agents. We thus

impose that
∑

j αj(Pt−1) = 0n×n, such that
∑

j δj/m = δ̂. This multi-asset framework

allows for more general specification than Epps & Epps (1976), who assume that α(Pt−1)

is simply the inverse function.

Let us interpret this crucial specification by computing the extent of disagreement

between one agent and the market participants before the price change:

δj − δ̂ = αj(Pt−1)ABS(δ̂)(1/γ) (6)

The extent of disagreement increases with the absolute value of the average change

of price expectations. The economic logic of this specification is the following: when all

economic actors expect small (positive or negative) price changes, e.g. due to new public

information, their disagreement is likely to be small. On the other hand, if some eco-

nomic actors receive private information and formulate new price expectations that are

very different from their previous expectations while other economic actors did not access

this information, the new agents’ price expectations will be much more widely dispersed

around a new average change of price expectations.

The specification of the stochastic matrix αj recognizes that there may be variation in

the logic described above. For instance, if a substantial new piece of public information

is received and similarly interpreted by all economic agents, the average change of price

8To avoid cumbersome notations, we will avoid the conditional formulation in the remainder of the

paper.
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expectations can be high and disagreement low. Conversely, if many economic agents

receive the same significant private information, interpret it differently, and consequently

formulate new price expectations in opposite directions, the average of the new price

expectations can be equal to that of the previous price expectations, despite a higher

dispersion.

The presence of the inverse of current prices in the extent of disagreement is not

economically interpreted by Epps & Epps (1976) and appears as a convenient price nor-

malisation. A complementary economic interpretation for storable commodity markets is

that economic actors, while forming new price expectations after receiving new informa-

tion, take into account the current market situation. For instance, when current prices are

relatively low compared to historical prices, economic actors can believe that commodity

stocks are plentiful, and thus spot or physical (as well as futures) prices cannot change

significantly due to the mitigating effect of stocks (Williams et al. 1991). Accordingly,

some economic actors should make limited efforts to gather and process information to

form new price expectations. In such an environment, even though significant private

information received by some market participants cannot lead to significant (physical

and futures) price changes, it will lead to more dispersed price expectations around the

average value. Conversely, when current prices are relatively high compared to historical

prices, many, if not all, economic actors concerned by a potential price bubble will gather

and process public information. In this instance, price expectations should be character-

ized by a lower dispersion once a new piece of information has been released, as all the

economic agents will be looking for it.

This interpretation of the inclusion of current prices in the disagreement specification

extends to our multi-asset case. Indeed, our general formulation αj(Pt−1) allows for rich

specifications, where the current prices of some assets may impact the changes in price

expectations of other assets. We could also imagine the changes in price expectations

being function of the current price’s deviation from a long-term cointegration relationship.

For instance, if certain actors, e.g. manufacturers, find that the current price levels are

significantly spreading out from the long-term physical relationships, they will expect the

prices to progressively revert towards their long-run equilibrium.
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Whereas in our empirical study of the soybean crush spread we will assume that three

partially informed agents trade the individual markets and the manufacturer intervenes

simultaneously in the three related commodities (bean, oil and meal) meaning that n=3

and m=4. For the sake of notational clarity, in the following theoretical demonstration

we will consider a simpler case with two commodities (n=2) and three agents (m = 3).

The dimension extension of this model to the case of the soybean crush is straightforward.

Agent 1 is operating on both markets, while agent 2 only intervenes in the first market

and agent 3 only in the second, exactly as partially informed market operators, such

as index traders, might behave. In this simplest scenario, we assume that the initial

market situation is different from the long-term price equilibrium, which, in the case of

cointegrated time series, can be represented by the product of cointegrating vector β and

the time t − 1 market prices Pt−1. Furthermore, we assume that only agent 1 receives

and processes new information. Due to partial information, the other two agents will

not change their price expectations. Accordingly, the disagreement among agents’ price

expectations as expressed in eq. (5) increases and then depends on the long-term price

relationship, which is only known to agent 1. The following specification captures this

market configuration:

α1(Pt−1) =

 1
φ1β′Pt−1

0

0 1
φ2β′Pt−1

 , α2(Pt−1) =

− 1
φ1β′Pt−1

0

0 0

 ,

and α3(Pt−1) =

0 0

0 − 1
φ2β′Pt−1

 (7)

whereby φ1 and φ2 are positive random variables, both with expected values of one.

We check that
∑3

i=1 αi = 0. With only two agents in each market, there is only one

disagreement per market (which amounts to 1
φ1β′Pt−1

in the first market and 1
φ2β′Pt−1

in

the second market). It should be clear that the term ABS(δ̂) in eq. (5) allows our first

agent to be long or short, and to have lower or higher price expectations.

Having interpreted the changes in price expectations according to Epps & Epps (1976),

we should now solve our model using the generalized α(Pt−1) formulation, bearing in mind

that long-term price cointegration could be included in this formulation. Summing over

12



all j equations (4), using (5) and the market equilibrium condition, we find :∑
j

Vj = 0 (8)

=
∑
j

[
λj δ̂ + λjαj(Pt−1)ABS(δ̂)1/γ − λj∆P

]
(9)

so

∆P = δ̂ +

(∑
j

λj

)−1∑
j

λjαj(Pt−1)ABS(δ̂)1/γ (10)

This equation (10) is the generalized version of the Equation (20) in Epps & Epps

(1976), where they assume m = 2, α1 = −α2 and λ1 = λ2. In this particular case, the

second term to the right hand side is zero, and the price change is simply given by the

average of the new price expectations. In our more general setting, the price change also

depends on the m matrices λ, which include the risk aversion (or investment capacity)

as well as the individual expected variance-covariance matrix for each economic agent

intervening in the markets.

In the two-agent economy considered by Epps & Epps (1976), the volume of the

market equals the volume of both agents because, if one agent is short, the other one has

to be long. Proceeding to our more general economy, let us assume that one economic

agent (e.g. agent 1, a risk-averse manufacturer) is participating in all markets, making

λ1 invertible. Then, from equation (4), we obtain:

λ−1
1 V1 = δ̂ + α1(Pt−1)ABS(δ̂)1/γ −∆P (11)

and, using equation (10), it can be simplified as:

λ−1
1 V1 =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

ABS(δ̂)1/γ (12)

We thus obtain a relationship between the average change of price expectations and

the volumes traded by agent 1:

δ̂ =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

−γ (λ−1
1 V1

)γ
Diag

(
Sgn(δ̂)

)
(13)

We finally combine this last equation with equation (10) to write the relationship between

asset prices changes and traded volumes as follows:

∆P = Ω(V1)γDiag
(
Sgn(δ̂)

)
+

(∑
j

λj

)−1∑
j

λjαj(Pt−1)Ω(V1) (14)
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where:

Ω(V1) =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

−1

λ−1
1 V1

Equation (14) generalises the price-change equation (21) obtained by Epps & Epps

(1976), which does not include the second term on the right hand side. This expression

makes clear that we have a non-linear relationship between the price changes and the

volumes traded by one agent participating in all markets.

Proposition 1:

Let’s assume a two-commodity setting, where three investors are characterised by dif-

ferent levels of risk aversion and/or different variance-covariance matrices are forecast,

while retaining γ = 1, as well as the particular specifications 7 for the traders’ forecast

matrices αi=1,...,3. Then, the assets’ joint price dynamics are characterized by a vector

error-correction model (VECM) relationship if and only if the matrix Π?(V1), which is a

function of the volume traded by agent 1, is low-rank in the following expression (for a

demonstration, see Supplementary Material A):

∆P = α1(Pt−1)−1AV1 + BV1

= Π?(V1)Pt−1 + BV1 (15)

where:

Π? = ΦAV1β
′

Φ =

φ1 0

0 φ2


A = Diag

(
Sgn(δ̂)

)
[I2 − λ?]−1 λ−1

1

B = λ? [I2 − λ?]−1 λ−1
1

λ? =

(∑
j

λj

)−1
λ11

1 − λ11
2 0

0 λ22
1 − λ22

3


where I2 is an identity matrix of dimension 2× 2 and β and κ(V1) = ΦAV1 two low-rank

matrices of dimension (2 × 1)9. This means that, if we assume the cointegrating vector

9In our two-commodity setting, we obtain a (2×1) vector. Nevertheless, if more assets are taken into

account, two matrices, β and κ, of dimension (n× h) are thus obtained, whereby n denotes the number

of assets and h the number of cointegration relationships among the assets.
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β to be stable over time, both elements of the vector κ, denoted respectively κ1 and κ2,

associated with the speed of reversion towards the long-term cointegration relationship

are a function of the volumes traded by agent 1 in both markets. By assuming that only

one trader is trading in both markets, we also assume that this agent has no arbitrage

limit and can thus match the number of contracts that the two other agents would like

to sell or buy on each individual market. This explains why the theoretical relationship

does not involve the other agents’ positions or trades per asset but only their risk aver-

sion and variance-covariance expectations. Thus, only the volumes associated with the

agent participating in both markets are considered capable of affecting both prices and

revealing a multivariate cointegration relationship in a high-frequency setting.

Another important point to make for our empirical study is that, in studying the link be-

tween κ and traded volumes, we are conditioning our analysis to the assumption that the

system is cointegrated. However, the matrix Π could itself be function of traded volumes

without being low-rank, which would mean that the auto-regressive matrix of the asset

prices would be function of volumes but not necessarily the cointegration process itself.

To demonstrate that the traded volumes play a determining role in the cointegration pro-

cess itself, we thus need to verify that not only κ, but also the rank of matrix Π is related

to volumes. Put differently, the rank of matrix Π - which determines whether or not a

cointegration relationship exists - and the low-rank matrix κ must both be function of

the volumes traded of each asset to justify the conclusion that the cointegration process

is intrinsically linked to the volumes traded in the financial markets.

Finally, we notice that the traded volumes also impact the constant term in equation

(15). Nevertheless, if we assume that all traders are characterized by the same level of

risk aversion and forecast the same variance-covariance matrix, that is λj=1,...,3 = λ1,

the matrices λ? equal zero and, by definition, the matrix B as well. Equation (15) thus

simplifies to:

∆P = α1(Pt−1)−1Diag
(
Sgn(δ̂)

)
λ−1

1 V1 (16)

which also points to a VECM relationship, though without the constant term.

To empirically validate our model and the associated hypotheses, we propose to test

and investigate the dynamics of the intra-daily cointegration among assets as a function

of the daily traded volume and order book depth of individual assets. We will also

investigate how, under the hypothesis of cointegrated time series, the dimension of the
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adjustment space spanned by the loading vector κ can be affected by traded volumes,

once demonstrated the stability over time of the cointegrating vector β. Nevertheless,

studying dynamics at such a high level of granularity has its inherent statistical challenges,

including microstructure noise and asynchronicity of traded prices. To address these

challenges, cointegration dynamics must be written in a state-space form.

3 Econometric Models

Our theoretical model leads to a VECM model that links prices and volumes for cointe-

grated assets. The very same VECM has already been considered in the high-frequency

literature on the econometric representation of the price-discovery process between two

closely related securities. Initially adapted by Hasbrouck (1995) to describe the joint

dynamics of closely linked securities traded in different markets, the cointegration model

has ever since been considered in high-frequency settings to capture the lead-lag relation-

ship between related assets, such as underlying spot prices and related futures or options

prices, or equities issued by the same company in different markets (Foucault et al. 2017,

Hasbrouck 2019, Brugler & Comerton-Forde 2019). These studies generally used cointe-

gration to represent very high-frequency joint dynamics resulting from financial arbitrage

strategies, such as cash and carry or triangular arbitrage (Foucault et al. 2017). This pa-

per, on the other hand, focuses on cointegration relationships stemming from the physical

characteristics of each asset, such as the relationship between a given commodity and its

by-products, where no genuine arbitrage gain is to be expected. The supply and demand

disequilibrium associated with the commodity itself or its by-products could indeed con-

sistently or temporarily change the associated spread levels. This rich strain of literature

does, however, shed light on high-frequency data features such as asynchronicity, mi-

crostructure noise, or price staleness and idleness, which we need to take into account in

order to reduce the risk of model misspecification.

Our model can be cast in a state-space formulation of the VECM model, whereby

the idle prices are considered as missing data, unlike in Buccheri et al. (2019), Buccheri,

Corsi & Peluso (2021) and Buccheri, Bormetti, Corsi & Lillo (2021)10. Initially proposed

10For the sake of completeness, a potential missing-data modification for their algorithm is mentioned

in the technical appendix of Buccheri, Corsi & Peluso (2021).

16



by Shumway & Stoffer (1982) and extended to the cointegrated processes by Seong et al.

(2013), missing-data models consist in filling the database using a latent-process expected

mean, conditional on given parameters. We use the same filtering technique proposed by

Seong et al. (2013), where observation noise is added to cope with microstructure noise,

as described by Buccheri et al. (2019), Buccheri, Corsi & Peluso (2021) and Buccheri,

Bormetti, Corsi & Lillo (2021). Nevertheless, our model should not be confused with

the model proposed in the latter two contributions, as the information associated with

zero returns is treated differently in our model, allowing us to tackle in a different man-

ner the inference biases stemming from the price idleness described in Bandi et al. (2020).

3.1 VECM State-Space Representation

Let us assume h cointegration relationships among n non-stationary financial assets

prices; we will denote Pt the n dimension row vector of the asset prices at time t; then

equation (15) can be written as the following vector error correction model (VECM):

∆Pt = c0 + ΠPt−1 +

p−1∑
j=1

Γj∆Pt−j + et (17)

where the low-rank matrix Π = κβ′ can be decomposed into two rank h-matrices κ and β

of dimensions (n×h) and et ∼ N(0,Σ). The constant term in equation (15), denoted as c0

here, can be removed and included as an intercept term in the cointegration relationships,

as demonstrated in Lütkepohl (2005)11. This VECM formulation can thus be equivalently

written as a VAR(p) model, such that (Lütkepohl 2005):

Pt =

p∑
j=1

ΦjPt−j + et (18)

where Φ1 = In + Π + Γ1, Φj = Γj − Γj−1 for j = 2, . . . , p− 1 and Φp = −Γp−1.

Following Buccheri et al. (2019), Buccheri, Corsi & Peluso (2021) and Buccheri,

Bormetti, Corsi & Lillo (2021), we assume that this discretized multivariate dynamics is

11As demonstrated in Lütkepohl (2005), if we keep the constant in equation (17), we should then

constrain it for the model estimation, such that c0 = −κβ′µ0, where µ0 is the adjusted constant. In this

way, we avoid generating a linear trend in the mean of Pt.
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latent in a high-frequency setting and thus inaccurately observed on account of the ubiq-

uitous microstructure noise present in financial markets. A state-space representation is

thus fully justified, with the transition equation following from expression (18):

xt = Fxt−1 +Get (19)

where xt = (P ′t , P
′
t−1, . . . , P

′
t−p+1)′ and where we define F as the following np × np tran-

sition matrix:

F =



Φ1 Φ2 · · · Φp

In On · · · On

On In · · · On

...
... · · · ...

On On · · · On


and the np× n matrix G as:

G =

 In

O(np−n)×n


The following expression corresponds to the observation equation:

yt = Htxt + wt (20)

where wt is a zero mean, normally distributed uncorrelated q × 1 noise vector with R

as q × q covariance matrix. Moreover, Ht corresponds to a q × n observation design

matrix, which converts the unobserved n×1 vector xt into the q×1 imperfectly observed

series yt. This observation equation is different from the one proposed by Buccheri et al.

(2019), Buccheri, Corsi & Peluso (2021) and Buccheri, Bormetti, Corsi & Lillo (2021),

where the matrix Ht = In. In our state-space model, we thus distinguish the situation

where one of the assets has simultaneously traded with the others or not. With Ht = In,

the measurement error associated with an idle price is first assumed to be a zero mean

and finite variance white noise. Furthermore, this measurement error is mixed with

the potential observation error when the cointegrated assets are simultaneously trading.

This assumption can have significant impact on the cointegration model’s estimation

and the interpretation of results, as demonstrated in our empirical study. This is due

to the fact that price idleness could not be considered price discreteness but conveying

information closely related to the traded volumes (Bandi et al. 2020). Our empirical

study buttresses this conclusion, showing that cointegration results differ significantly
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depending on whether we assume that the matrix Ht = In or not. Provided that this

state-space formulation is linear and Gaussian, we can apply the conventional Kalman

filter and Kalman smoother, under the assumption that the parameters θ = {Φj,Σ, R}

are known12.

3.2 Model Estimation

3.2.1 The EM Algorithm

Whereas the rank and the parameters denoted θ are assumed to be known in the filtering

and smoothing steps described in the previous section, Dempster et al. (1977) developed

an Expectation Maximisation algorithm, which consists in maximizing the complete data

log likelihood and which assumes all data x1:T to be available, conditional to the data

y1:T that we observed:

logL(θ;x1:T , y1:T ) = −1

2
log |Λ| − 1

2
(x0 − δ)′Λ−1(x0 − δ)

− T

2
log |Σ| − 1

2

T∑
t=1

(Axt − ΓBxt−1)′Σ−1(Axt − ΓBxt−1)

− T

2
log |R| − 1

2

T∑
t=1

(yt −Htxt)
′R−1(yt −Htxt) (21)

where:

A =
[
In − In On×(np−2n)

]
;

Γ =
[
κ Γ1 Γ2 . . . Γp−1

]
;

and

B =



β′ Oh×n Oh×n . . .

In −In On . . .

On In −In . . .
...

...
...

. . .

On . . . . . . In


12Bear in mind that the matrices Φj include the parameters of sub-matrices κ, β, and Γj . The lag

used for the VECM model is determined with the Bayesian Information Criterion (BIC). Furthermore,

in the Supplementary Material B, a detailed description can be found of both the filter and the smoother

used to estimate the conditional expectation, as well as of the conditional covariance matrix associated

with the latent process.
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with a normalized β = [Ih β
′
0], β0 being the (n − h) × h matrix to be estimated13, and

x0 ∼ N(δ,Λ). The EM algorithm then consists in a two-step recursive procedure14:

i) the Expectation step: a given set of parameters θl associated with the l-iteration is

used to calculate the expected value of the complete-data log-likelihood, conditional on

θl, represented by the operator El, and the observed data y1:T :

Q(θ|θl) = El{logL(θ;x1:T , y1:T |y1:T )} (22)

where the latent process expectation and covariance matrix estimators conditional on the

observed data are provided by the combination of the Kalman filter and smoother.

ii) The Maximisation step: we maximize this conditional expectation of the complete-

data log likelihood using the analytical gradient15 to obtain a new set of parameters θl+1

that we use in the next iteration of the algorithm. We then go back to the E-step.

This iterative procedure has been shown to provide a non-decreasing likelihood to-

wards the maximum incomplete-data log-likelihood innovations form (Dempster et al.

1977, Shumway & Stoffer 1982) that we use to determine at each iteration when the

algorithm should be stopped.

3.2.2 The Rank Estimation

While we have thus far assumed the rank of the Π = κβ′ matrix to be known, we perform

the conditional likelihood ratio test to estimate it conditionally with respect to θ̂, the

EM-estimated parameters, and the observed data y1:T . For this likelihood ratio test, we

postulate the following null hypothesis:

H0 : rank(Π) = r0 with 0 ≤ r0 < n

where r0 is the specific matrix rank to be tested. The alternative hypothesis is:

H1 : r0 < rank(Π) ≤ r1

13It is interesting to notice that Axt = ∆Pt, while ΓBxt−1 = ΠPt−1 +
∑p−1
j=1 Γj∆Pt−j .

14The Supplementary Material C provides a detailed description of the algorithm
15A detailed derivation of the gradient is provided in the Supplementary Material C
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Using the respective complete-data log likelihoods associated with θ?r0 , the EM-estimated

optimal set of parameters assuming rank(Π) = r0, and θ?r1 , which denotes the optimal

parameters with rank(Π) = r1, the LR statistic λLR(r0, r1) is equal to:

λLR(r0, r1) = −2 log

[
supθ?r0L
supθ?r1L

]
= −2 [logL(r1)− logL(r0)] (23)

With a preliminary panel stationarity test, we ensure all the asset prices follows unit

root processes, hence rank(Π) < n. Then we considered in our empirical study the

likelihood ratio test statistic (23), with r0 = 0 and r1 = 1, to assess the p-value for a rank

of Π equal to 016. This rank-associated probability is then considered an ordinal number

to detect whether or not asset prices are cointegrated on a daily basis and to establish

the strength of this cointegration relationship throughout a given day. Regarding the

non-standard asymptotic distribution of λLR(ri, ri+1) under the null hypothesis, we refer

to the 99% critical value of 7.02 as provided by the table (15.1) in Johansen (1995).

4 Data: The Soybean Complex

For our empirical study, we use the soybean crush spread, a well-known commodity com-

plex that has been extensively studied in the futures markets literature (Johnson et al.

1991, Rechner & Poitras 1993, Simon 1999, Mitchell 2010, Liu & Sono 2016, Marowka

et al. 2020, Li & Hayes 2022). This spread is often studied for its presence of cointegrated

multivariate time series17 and also because soybean futures are among the most traded

commodity derivatives contracts in the world, with a double quotation on the US and

Chinese derivatives markets. Other cointegrated financial assets could have been con-

16For the selection of the model, in our empirical study we also tested the presence of more than one

cointegration relationship using appropriate r0 and r1.
17Based on long-term time series, Simon (1999), Mitchell (2010), and Liu & Sono (2016) demonstrate

in their empirical studies the existence of a stationary combination of soybean, soyoil and soymeal futures

prices. This cointegration relationship can be interpreted as a long-term market price equilibrium for

the so-called crush spread, combined with transitory seasonality and a consistent trend. More recently,

Marowka et al. (2020) presented evidence that the crush-spread cointegrating vector and the associated

cointegrating space display significant time instability on a yearly basis, which is detrimental to soybean

processors who hedge their physical exposure on financial markets.
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sidered, such as interest rates (Bradley & Lumpkin 1992, Dewachter & Iania 2011) or

equities (Chen et al. 2002, Awokuse et al. 2009).

For this study, we have used the data from the soybean complex (soybeans, soybean

oil, and soybean meal) quoted at the CME (Chicago Mercantile Exchange). Matching

the product codes at the CME Globex, we abbreviate soybean to ZS, soybean oil to ZL,

and soybean meal to ZM; in equation (17), the prices vector zt will observe the same

order, such that z1t represents the soybean price, z2t stands for the soyoil price, and z3t

denotes the soymeal price, all at time t.

The high-frequency database investigated covers the total trading activity of 2015,

amounting to 243 trading days. The database is stored as a sequence of messages,

whereby each message has a millisecond-resolution timestamp and contains an update

of the security. Such an update can be an executed trade, a change in the limit order

book, or the daily open-interest statistic. Note that these messages only arrive at up-

dates; hence, the frequency of updates (messages) is based on and reflects the activity in

the market.

Using these messages, the order book can be reconstructed, and a time series can be

generated choosing any snapshot size. In this study, we opted for one-minute snapshots

in order to limit the Epps effect (Epps 1979), which describes sample correlation bias

as moving towards zero as the data frequency in the analysis increases18. Moreover, we

distinguish two periods within a trading day: the electronic trading session from 7PM to

7.45AM (session 1) and the market trading session from 8.30AM to 1.20PM (session 2),

during which most of the trades take place. For the robustness check, we use multiple

methods to generate snapshots, which are described below. In addition, the XLM is

calculated for each snapshot, so as to measure the liquidity of the market at any point in

time (Gomber et al. 2015).

The XLM (Exchange Liquidity Measure) calculates the round-trip liquidity premium

for buying and selling a chosen volume - i.e. how much the average transaction price

18In order to identify any side effects from the method used to generate the one-minute snapshot time

series a robustness check has been added in the supplementary materials: Instead of collecting the asset

prices available at the first second of each minute, those available at the 30th second are used. For this

last data sample (30s Monthly Rollover), the Monthly Rollover has been retained as rolling technique.
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deviates from the mid price. Equation (26) shows how to calculate the XLM:

XLMB,t(V ) = 10, 000
PB,t(V )−MPt

MPt
(24)

XLMS,t(V ) = 10, 000
MPt − PS,t(V )

MPt
(25)

XLMt(V ) = XLMB,t(V ) +XLMS,t(V ) (26)

where, MPt is the mid price at time t, PB,t(V ) is the average transaction price of a buy-

initiated market order with dollar value V at time t, PS,t(V ) is the average transaction

price of a sell-initiated market order with dollar value V at time t, and XLMt(V ) the

round-trip liquidity premium at time t. In this research, the dollar value is set to be the

median dollar value of the order book spanning the full year.

At any point in time, there are always multiple contracts available for trading with a

separate open interest. Soybean futures are available at the CME - in each specific year

- as January, March, May, July, August, September, and November contracts, whereas

soymeal and soyoil have October and December contracts but no November contracts.

Different rollover techniques can be considered to combine all contracts - i.e. create a

single time series per commodity that captures the most relevant information (Carchano

& Pardo 2009).

For the robustness check, three different rollover techniques will be compared in this

paper. The first rolling technique is based on the soybean open interest (ZS Open inter-

est). All three contracts are rolled to the next maturity based on the soybean contract’s

largest open-interest criteria (Carchano & Pardo 2009). This method ensures the rollover

of all time series at the same time, while soybean is selected for being the largest contract

in the soybean complex. The second rolling technique is an independent open-interest

rollover (Independent Rollover), where each contract’s open-interest crossover triggers

the associated position roll. The final rolling technique is the monthly rollover (Monthly

Rollover), which has been applied in most of the existing literature (Frank & Garcia 2011,

Trujillo-Barrera & Garcia 2012, Gorton et al. 2013, Etienne et al. 2014, 2015, Dorfman

& Karali 2015, Han et al. 2016, Fernandez-Perez et al. 2016, Fan et al. 2020). With this

rolling technique, the current position is rolled to the second nearby contract at the end

of the month preceding contract expiration.
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5 Econometric Results

To validate the theoretical model proposed in this article and thus demonstrate the

relationship between asset price cointegration and individual traded volumes, we divided

our results analysis into four subsets. We first verify the intraday non-stationarity of

the marginal dynamics, as well as the cointegration among these dynamics. We take

this opportunity to demonstrate how time of day may affect the joint stationarity of the

soybean complex. Following our Proposition 1, we then validate the hypothesis that the

rank of matrix Π is indeed a function of the volume traded on each market. In particular,

we demonstrate that the presence or absence of cointegration among the soybean-complex

components at the high-frequency level - and thus the intraday efficiency of the complex

futures markets - is related to the volumes traded in each of these markets.

Furthermore, as stated in our proposition, the presence in the markets of traders with

sufficient arbitrage capacity to enforce the cointegration relationship should manifest

through κ, the speed of reversion towards the long-term trend, whereas the cointegrat-

ing vector should, on average, remain close to the physical weights following from the

industrial soybean trituration. We thus verify in the following that the intraday cointe-

grating vector and loading matrix display such features. Finally, we demonstrate how

our findings could influence the optimal rolling techniques designing.

5.1 Stationarity and Cointegration of the High-Frequency Soy-

bean Complex

For the unit-root test, we considered the panel test introduced by (Hadri 2000) and

apply it to the 243 trading days in 2015 for which we observe 1-minute data samples.

According to table 1, based on calendar order19, we demonstrate that the three intraday

price time series are non-stationary for almost all panels, which justifies the performance

of a high-frequency cointegration analysis.

19Other ordering variables for the panels construction have been considered, for instance relative to

daily traded volumes, the stationary hypothesis always rejected.
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Table 1: ZS Open Interest Rollover Panel Stationarity Test

30 days panela ZS dif(ZS) ZL dif(ZL) ZM dif(ZM)

1 5006.1 -7.5*** 4829.5 1.9*** 4602.3 -4.5***

2 4488.9 1.0*** 3573.5 0.8*** 4681.2 1.9**

3 4693.7 3.3 3792.2 8.5 4813.0 -29.7***

4 4381.8 -11.6*** 3604.6 -32.6*** 85.1 -40.5***

5 5314.4 -1.6*** 4547.3 -3.7*** 4983.6 0.0***

6 5685.0 -5.3*** 4730.4 -3.3*** 5677.9 -11.1***

7 4297.1 -11.3*** 406.0 -33.4*** 305.7 -40.2***

8 5211.1 -4.4*** 710.6 -40.3*** 379.2 -40.3***

a This table records panel stationarity test statistics for 30-day samples of session 2 one-minute data

considering the ZS open interest rollover technique. First, we sort the T-stat of the KPSS test

according to the calendar order of the three assets, from the lowest value to the highest value for 8

panels (30 days per panel). Second, we calculate the panel stationarity test statistics for each panel

(Hadri 2000), where critical values in one tail test are 1.282 for the 10% significance level, 1.645 for

the 5% significance level, 2.326 for the 1% significance level. * p <0.10, ** p <0.05, *** p <0.01.

As mentioned earlier, one of the main problems when studying the joint dynamics of

high-frequency time series is the non-synchronicity of the markets, which disturbs signif-

icantly the estimation of the dependence structure among time series (Lo & MacKinlay

1990). This impact on the estimation of the parameters manifests itself when compar-

ing an EM-algorithm-based estimate with a basic Johansen approach at high-frequency

level. To carry out the Johansen test on non-synchronous high-frequency data, we had

to apply ad hoc matching, which implies matching the price of a given asset that has

just traded with the last-traded price of the other assets (denoted below as ’all price’),

depending on the frequency considered. In addition, to investigate the potential lead

effect of a specific asset on the other lagged assets, we applied an asset-based matching

algorithm. This method consists in matching the last trading price of either the soybean,

the soybean oil or the soybean meal (denoted respectively ZSmatch, ZLmatch and ZM-

match in the following) with the most recent trading prices of the two other assets. We

thus constrained our sample time stamp to a specific asset and presumed the lead-lag

structure of the data. Hardly any cointegration was detected using Johansen’s approach,
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Table 2: Cointegration Test for Session 2 - 1 minute data

Johansen Cointegration Testa day month quarter

ZS Open Interest Rollover all priceb 64 1 0

ZS Open Interest Rollover ZSmatch 69 6 1

ZS Open Interest Rollover ZLmatch 70 6 1

ZS Open Interest Rollover ZMmatch 68 5 1

Missing Data Filtered Cointegration Testa day month quarter

ZS Open Interest Rolloverc 180 11 3

a This table shows the number of cointegrated days, months and quarters for 2015. It compares the

results of the Johansen approach and the missing-data filtering techniques described in section 3.1.

b ’All price’ represents the trading-time approach, whereby the idle prices are not considered miss-

ing and are still assumed to be fair prices for the given assets until the next trade. ’ZSmatch’,

’ZLmatch’, and ’ZMmatch’ represent the trading-time approach, where we match the trades for a

particular asset with the idle prices of the two other assets.

c In this data set, idle prices are not considered informative and have been removed. As such, only

the missing-data filtering technique can be applied.

regardless of the matching method applied. After filtering for microstructure noise and

time-series asynchronicity, however, the number of cointegrated days detected becomes

significantly higher, as shown in table 2. Since we know that the frequency of the data

versus the period of data acquisition can impact the estimation of cointegration models

(Hakkio & Rush 1991), we increased the size of the sample to facilitate the detection

of cointegration by Johansen’s model. Whichever sample scheme we considered - daily,

monthly, or quarterly - Johansen’s approach without data filtering performed poorly in

comparison with the EM-algorithm approach. For sake of robustness we verified that

these results are not affected by the various rolling techniques and the data-frequency

choices20. Furthermore, we discovered the presence of a diurnal effect with regard to

cointegration. A strong cointegration is indeed observed during session 2 trading hours

which fades away during session 121. Another interesting result is the stronger intraday

cointegration we observe in average on USDA announcement days, although the number

of observations available is limited.

20A description of the tests results is provided in the supplementary material E
21The results are provided in the supplementary material E.1
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5.2 Intraday Cointegration and Traded Volumes

To determine whether the intraday price-cointegration process depends on the volume

traded of each asset, we first have to verify that the rank of the product matrix Π = κ′β∗

in equation (17) is a function of the daily traded volumes. The Granger representation

theorem indeed states that an error correction representation exists if low-rank matrices

κ′ and β∗ both exist. To verify that the presence or absence of cointegrated time series

is function of the traded volume, we analyze the daily likelihood ratio test time series

calculated based on the intraday asset-price vectors, in particular the likelihood ratio of

the null-rank versus the rank-one hypothesis. This specific ratio indicates whether the

matrix is statistically closer to a null-rank matrix or a rank-one matrix. If the matrix

rank is zero, all of the soybean complex components are integrated, but no cointegration

has been statistically detected. Conversely, if the matrix is rank one, at least one cointe-

gration relationship has been detected.

The interest of the likelihood-ratio-based statistic we proposed to retain is that we

know its asymptotic distribution and can thus determine a set of critical values for the

test. Studying intraday data on a daily basis allows us to detect the presence of cointe-

gration and then compare it with the daily traded volumes.

We apply a logit stepwise regression with binomial distribution (denoted GLM) to

model the cointegrated / non-cointegrated binary variable as a function of the daily

traded volumes. To interpret the coefficients for each regressor, we report the associated

marginal effects (Greene 2003).

Since traded volumes can be closely related to a market’s price volatility (Bessem-

binder & Seguin 1993), we propose a set of nine control variables stemming from high-

frequency literature. This includes assessments of the average intraday realized variance,

bipower variation and the XLM index for each of the three components of the soybean

crush spread. The XLM index allows us to distinguish between the influence of the daily

traded volumes and the average depth of the book order, which could be defined as the

average potential tradeable volume for each individual market. While bipower variation

and realized variance, as defined in Couleau et al. (2020), are two measures of integrated

volatility, bipower variation offers the specificity of being a robust metric for identifying
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rare jumps as well as a model-free estimator of integrated variance. One of the alterna-

tives to this estimator is the realized variance measure.

The GLM stepwise regression results displayed in table 3 show that the daily volumes

are significant in explaining the rank of matrix Π and thus the cointegration process

in markets. It is worth highlighting that the bipower variation measure is statistically

insignificant in the GLM stepwise regression. This result supports the notion that the

information content regarding price volatility and traded volumes should not be mistak-

enly confounded when analyzing multivariate high-frequency price dynamics.

Moreover, the daily traded volumes for soymeal and soyoil tend to significantly and

positively impact the rank of the Π matrix, meaning that higher traded volumes lead to

a non-zero rank matrix and thus cointegration relationship. With regard to market effi-

ciency and cointegration, the volume or liquidity of soybean are not necessarily the most

important variables to monitor for exchanges, but rather the volumes of the byproducts22.

Furthermore, the interpretation of these results, based on the limit-of-arbitrage theory,

would be that the industrial agents who enforce time-series cointegration in our model

have limited capacity for arbitrage and thus no capacity to intervene on a daily basis.

The significance and the sign of the XLM ZS index regression coefficient shed light on

the relationship between asset price cointegration and the market’s potential liquidity:

when potential trading activity in the soybean market is noticeably promising (i.e. a low

XLM ZS index), cointegration tends also to be weaker or even absent. In other words,

if arbitragers expect a high volume to be traded on the bean, relative to the byproduct,

they prefer to stay out of the market, rather than bear the risk of an intraday widening

of the soybean crush spread.

22As a robustness check, we also investigate in the Supplementary Material E.2 if the sampling fre-

quency could have any impact on our results. As we proceeded to the GLM stepwise regression with

2-minutes data set, the conclusions turned out to be the same, that is, daily volumes significantly influ-

ence the cointegration process.
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Table 3: Stepwise GLM Regression of Matrix Π Rank

Regressor Coefa P-Value Marg.Eff.b

RV ZS

BV ZS

RV ZL

BV ZL

RV ZM

BV ZM

ZS vol

ZL vol 4.5E-05 0.0224** 0.0001

ZM vol 8.5E-05 0.0009*** 0.0001

XLM ZS 0.1397 0.0358** 0.1379

XLM ZL

XLM ZM

R2 0.27

Adj-R2 0.26

a Using daily sets of one-minute data from session 2 and the ZS open interest rollover technique,

this table records AIC-based stepwise GLM regressions of the daily cointegrated/non-cointegrated

binary variable on the daily realized variance (RV), bipower variation (BV), traded volumes (vol),

and XLM index (XLM); ZS stands for soybean, ZL for soybean oil, and ZM for soybean meal. With

* p <0.10, ** p <0.05, *** p <0.01.

b In this table, we display only the significant GLM coefficients using a logit regression with binomial

distribution and we calculate the associated marginal effects as proposed by Greene (2003) and

defined as:

Λ (x′β) =
ex

′β

1 + ex′β

dΛ (x′β)

d (x′β)
=

ex
′β

(1 + ex′β)
2 = Λ (x′β) [1− Λ (x′β)]

∂E[y | x]

∂x
= Λ (x′β) [1− Λ (x′β)]β

where x is the regressor’s vector and β is the regression coefficient vector.

As a complement to the linear GLM approach we propose a set of panel cointegra-

tion tests which allow to capture non-linear relationships. The panel cointegration test
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proposed by Larsson et al. (2001)23 has been used for our high-frequency study, relating

this test to 8 panels on the different variables of interest. For instance, to study the non-

linear impact of soybean traded volume on the cointegration test statistics, we ranked

the 243 daily traded volumes for the contract ZS, created 8 sub-samples of 30 volume

data points each (the last sample got 33 points), and applied the panel cointegration test

to the associated cointegration results that we obtained from daily 1-minute asset prices.

Table 4 shows the associated test statistics for each panel. This ranking of the data

before analysing the panel allowed us to study the stability of the relationships among

the different panels associated to the distribution of a given variable.

Table 4: ZS Open Interest Rollover Larson Panel Cointegration t-statistic

30 days panela 1 2 3 4 5 6 7 8

Calendar order 33.01*** 37.10*** 16.66***25.38*** 54.22*** 40.48***-234.21 -178.86

ZS volume order -267.69 -142.07 30.69***47.89*** 35.51*** 42.10*** 30.61*** 41.44***

ZM volume order -475.57 -5.29 36.36***56.58*** 42.95*** 42.40*** 55.07*** 75.14***

ZL volume order -470.16 9.55*** 16.07***33.30*** 56.91*** 60.37*** 43.76*** 77.75***

ZS BV order -96.14 -64.66 -170.61 -9.45 38.64*** 20.23*** 40.63*** 54.96***

ZM BV order -282.20 -33.54 20.27*** -9.12 -5.14 23.25*** 52.53*** 53.71***

ZL BV order 34.74*** -93.31 -119.86 12.16***-44.18 -67.94 65.08*** 20.23***

a This table records the panel cointegration t-stat per 30 days panel using cointegration results based on

the high-frequency filtering method and daily one-minute data from session 2. We first sort the daily

t-stat by calendar order, volume order or bipower variation order of the three assets, from lowest value

to highest value for 8 panels (30 days per panel and 33 days for the last panel). Secondly, we calculate

the panel cointegration t-stat of each panel as proposed by Larsson et al. (2001), according to which

the critical value in the one-tail test is 1.282 for the 10% significance level (denoted with *), 1.645

for the 5% significance level (denoted with **), and 2.326 for the 1% significance level (denoted with ***).

We carried out this panel cointegration analysis for different data frequencies and

different panel sizes, using different rolling techniques and with respect to all the different

variables studied previously. The results are always the same, showing a strong and

23As shown by Banerjee et al. (2004) multivariate panel cointegration tests can be substantially over-

sized in presence of cross-unit cointegration. Nevertheless in our case the daily data considered within

each panels are not necessarily consecutive dates and thus not affected by cross dependencies.
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significant positive relationship between the rank of matrix Π and the traded volumes

of soymeal and soyoil 24. We clearly notice that only the lowest panel associated to

the traded volume of soyoil is not panel cointegrated, whereas the following panels are

showing a monotonic reinforcement of panel cointegration. This generally holds for the

soymeal traded volume panels as well, whereas the monotonic increase is not observable

for the other variables, especially the proxies of high-frequency volatility associated to

the same asset. This table demonstrates that the traded volumes integrate information

that volatility measures are not taking into account.

5.3 Long-run Equilibrium Dynamics and Traded Volumes

While, in the previous section, we demonstrated how the rank of matrix Π is positively

related to the assets’ traded volumes, the following subsections provide a detailed analysis

of the joint and marginal dynamics components that cause this phenomenon. Conditional

on the (low) rank of matrix Π and if the time series are cointegrated, we can rewrite this

matrix as the product of two h × n sub-matrices κ and β, with h < n. The former, i.e.

the loading matrix, is interpreted as the adjustment of each asset’s prices to the long-run

equilibrium or error-correction term. The latter, i.e. the cointegrating vector, renders the

integrated initial data stationary. Following our theoretical model, the expected value of

the cointegrating vector should equal the trituration associated weights as expected and

enforced by the traders that intervene in the individual markets for all three crush-spread

components. Conversely, the loading matrix should be a function of the volume traded

for each asset, provided there is at least one cointegration relationship.

5.3.1 Adjustment Space

In this section, we investigate how the traded volumes impact the cointegration process.

To do so, we simultaneously study their impact on two related components of the cointe-

gration process. We indeed demonstrate that the traded volumes of specific assets directly

influence the parameters of the matrix κ and, as such, modify the null space associated

with the loading matrix. This, in turn, changes the assets’ marginal dynamics. That

being said, the economic interpretation one can develop directly from each element of κ

24Table 4 only displays the results for the traded volumes and the bipower variations, the other results

being non significant are available on demand.
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is questionable, given the identification challenges associated with the parameters κ and

β. As a matter of fact, by multiplying both parameters’ matrices by any other h × h

square matrix, we obtain, by definition, the same conditional distribution but another

interpretation of the individual parameters’ values. To deal with this scaling problem

and for a proper interpretation of the components of κ, we propose to study instead

the linked relative contribution of each asset to the common factor and thus the assets’

relative influence on the permanent component of the marginal assets dynamics. This

so-called ’relative market-information share’ was proposed by Hasbrouck (1995), while

Baillie et al. (2002) demonstrated that it is equivalent to the ratio of the respective com-

ponents of the vector κ⊥ weighted by the variance-covariance matrix of the innovations25,

such that:

κij =
κ⊥,iΣii

κ⊥,jΣjj

(27)

where κ⊥,i corresponds to the i-th element of the vector κ⊥ orthogonal to the vector κ

and Σii denotes the innovations variance associated to the asset i.

This ratio also provided information about the influence of the spread components

on each other. A high absolute ratio means that the numerator ’related assets’ Granger

causes the denominator ’related assets’, provided the higher relative influence of the for-

mer on the common factor26.

Following our theoretical model, if we assume that β⊥ in the VAR representation as-

sociated matrix Ξ27 is not related to the traded volumes, the relative market information

share should thus, through κ and κ⊥ components, be a function of the ij{i 6=j;i,j=1,2,3} rel-

ative traded volumes V oli/V olj. Furthermore, the variance of asset prices being closely

related to the volume traded (Epps & Epps 1976, among others.), we assume the scaling

multiplier in (27), that is the Σ matrix components ratio, to equal one, and we focus our

analysis on the squared value of the vector κ⊥ components ratios28, κ̃ij = (κ⊥,i)
2/(κ⊥,j)

2.

We then regressed it on the relative traded volumes and the same control variables that

25Please refer to Supplementary Material D for more details.
26Alternative methods have been proposed in the literature (Janzen & Adjemian 2017, Hu et al. 2020)

and could have been considered in this study.
27A formal definition of Ξ is provided in the Supplementary Material D
28According to Baillie et al. (2002), the ratio κ̃ij is equivalent to the relative information share of

market i versus market j defined in Hasbrouck (1995) if we consider the scaling multiplier, that is the Σ

matrix components ratio, to equal one and no correlation between the error terms Σij = 0.
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we previously considered: the high-frequency bipower variation measure, the realized

variance measure, and the XLM index.

Table 5: Regression of κ̃ij ratios

Regressor κ̃1,2 κ̃1,3 κ̃2,3 κ̃2,1 κ̃3,1 κ̃3,2

Vol ZS 0.097 0.613 -0.579 -0.528 -0.453 0.673

Vol ZL 0.331 1.366 -0.525 -0.498 -1.078 1.107

Vol ZM -0.586 -0.115 -0.442 -0.443 -0.365 0.186

Vol ZS/Vol ZL 0.806 -0.42 -0.249 -0.22 -0.706 1.312

Vol ZS/Vol ZM 0.643 0.366 -0.255 -0.213 -0.204 0.396

Vol ZL/Vol ZM 0.748 1.785 -0.197 -0.161 -2.71*** 0.251

Vol ZL/Vol ZS 2.5*** 0.908 -0.03 -0.047 -0.974 2.47 **

Vol ZM/Vol ZS -1.019 -0.691 0.19 0.1 -0.639 -0.836

Vol ZM/Vol ZL -0.016 -1.114 -0.07 -0.093 -1.034 1.072

RV ZS -0.215 0.215 -0.309 -0.281 -0.884 -0.336

RV ZL 1.008 1.249 -0.668 -0.626 -1.732 1.859

RV ZM -0.096 -0.063 -0.515 -0.479 -0.726 0.273

BV ZS -0.337 0.704 -0.346 -0.304 -0.756 -0.454

BV ZL 0.765 1.663 -0.634 -0.592 -1.734 1.67

BV ZM -0.475 0.213 -0.518 -0.478 -0.32 -0.275

XLM ZS 0.055 -0.046 -0.988 -0.949 -0.116 -0.412

XLM ZL 0.766 0.157 -0.954 -0.872 -1.362 1.138

XLM ZM 0.156 -0.038 -1.103 -1.07 -0.917 0.562

a Using daily sets of one-minute data from session 2 and the ZS open interest rollover technique,

this table records the coefficients and p-values associated to the regression of κ̃ij on the daily

realized variance (RV), bipower variation (BV), traded volumes (vol), and XLM index (XLM);

ZS stands for soybean, ZL for soybean oil, and ZM for soybean meal.

* p <0.10, ** p <0.05, *** p <0.01

We could thus conclude that, if the volumes traded in the byproducts’ markets are

sufficiently high relative to those in the bean market (meaning a simultaneous increase
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of V ol ZL/V ol ZS and decrease of V ol ZL/V ol ZM), the meal price will more signifi-

cantly Granger cause the other market prices (higher κ̃3,2 and κ̃3,1). However, the more

disconnected the volume of the bean market from that of the byproducts’ markets (mean-

ing a simultaneous decrease of V ol ZL/V ol ZS and increase of V ol ZL/V ol ZM), the

less related the three markets (lower κ̃3,2, κ̃1,2 and κ̃3,1).

The results displayed in tables 5 validate our model assumption by displaying signifi-

cant linear relationships between three κ̃ij ratios and three traded volume ratios, whereas

all other ratios or control variables prove to be insignificant. In addition, these linear

relationships show that the contribution of soybean to the common factor relative to that

of soyoil is positively related to the ratio of the traded volumes of soyoil and soybean.

This means that, the higher the volume of soyoil relative to soybean, the more soybean

will Granger cause soyoil (positive sign of V ol ZL/V ol ZS coefficient in the κ̃1,2 regres-

sion). We find the same interpretation for the relative contribution of soymeal relative

to soyoil. If the traded volumes of soyoil relative to soybean increase, we can expect

soymeal to even more significantly Granger cause the soyoil dynamics (positive sign of

V ol ZL/V ol ZS coefficient in the κ̃3,2 regression). Nevertheless, the lower the traded

volumes of soymeal relative to soyoil, the less soymeal prices will Granger cause soybean

prices (negative sign of V ol ZL/V ol ZM coefficient in the κ̃3,1 regression).

5.3.2 Cointegrating Vector

In this subsection, we investigate whether the cointegrating vector remains stable over

time and close to the physical weights resulting from the trituration of soybeans. Fur-

thermore, we verify that the cointegrating vector does not depend on the assets’ traded

volumes, as assumed within our model.

As we can see in table 6, the average and median values of the cointegrating vector

components remain rather centered near the physical quantities relayed by the CME and

displayed in this table. By comparison, if we consider the basic Johansen’s cointegration

test without dealing with the markets’ non-synchronicity, one can clearly notice from

table 6 that the average value is then significantly biased, while the standard deviation
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is twice the value obtained with an appropriate state-space formulation and the filtering

technique described earlier.

To validate the initial hypothesis of our theoretical model, we need to demonstrate

that, when the cointegration is efficiently playing, it is mainly through the adjustment

space and not the cointegrating space, which is preserved from the disequilibrium in

traded volumes. To this end and as for the κ vector components, we investigate whether

there is any statistically significant linear relationship between the ratios of the compo-

nents of the cointegrating vector β and the traded volume ratios combined with the usual

control variables. The results are available on demand, but no significant relationship

has been found for any of the ratios at the 1% or 5% critical level. At the 10% criti-

cal level, the β components ratios start to be slightly affected by the relative volumes

(Vol ZL/Vol ZM and Vol ZL/Vol ZS), but this concerns two pairs of β vector components

whose associated κ̃ij ratios were not related to traded volume (namely β1,3 and β2,3).

Table 6: Missing Data Filter - Daily Cointegrating Vector β Descriptive Statistics.

Missing Data Filtera Johansen Modela

ZS ZL ZM ZS ZL ZM

Median 1 -0.11 -0.19 1 -0.13 -0.17

Average 1 -0.09 -0.21 1 -0.29 -0.02

quartile 25% 1 -0.17 -0.24 1 -0.24 -0.25

quartile 75% 1 -0.06 -0.14 1 -0.05 -0.07

StDev 0 0.28 0.28 0 0.5 0.47

CME (physical) 1 -0.11 -0.22 1 -0.11 -0.22

a Using daily sets of one-minute data from session 2 and the ZS open interest rollover

technique, this table records descriptive statistics associated to the daily cointegrating

vectors components for cointegrated days only (based on the missing data filtered and the Jo-

hansen cointegration test). ZS stands for soybean, ZL for soybean oil, and ZM for soybean meal.
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5.4 Futures Contracts Rollover and Cointegration Relationships

Another observable consequence of the relationship between the strength of the intraday

cointegration and the traded volumes associated to each market concerns the optimal

rollover periods of futures contracts. As we can see in charts 1 and 2, the soybean-

roll (ZS Open interest) and the month-end (Monthly Rollover) methods show particular

differences before the month of October. Provided that intermediary but less-traded ma-

turities are in place for the months of August (ZSQ5) and September (ZSU5), we should

expect a conflict between these maturities and the highest open-interest contract for Oc-

tober (ZSX5), which trades at the same time.

Figure 1: Using daily sets of one-minute data from session 2 and the ZS open interest rollover technique,

this figure shows the daily Cointegration test statistics values. T-stats beyond 7.02 mean that the

cointegration is statistically significant. The light green lines represent the rolling dates.

We first notice that the choice of the rolling technique, described in the data related

section, creates a very significant difference in cointegration strength among derivatives

assets, as measured by the daily rank test statistics. The month-end rollover approach

suffers from the traded-volume weakness that characterizes the previously mentioned,

less liquid intermediary maturities. The soybean-roll technique skips these contracts and

directly trades the November contract (ZSX5) since it benefits from a higher open interest
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over the same period of time (cf. figure 3). This result underpins our theoretical model,

which tells us that the traded volumes are key variables in understanding and modelling

multi-asset joint dynamics.

Figure 2: Using daily sets of one-minute data from session 2 and the end of the month rollover

technique, this figure shows the daily Cointegration test statistics values. T-stats beyond 7.02 mean that

the cointegration is statistically significant. The light green lines represent the rolling dates.

Moreover, our model also states that some agents seek to enforce cointegration among

assets and, to this end, build their expectations on the dynamics in the physical markets

and on the fundamental or physical properties of the underlying commodities or assets.

The futures with maturity in November (ZSX5) are indeed generally preferred by the

crushing industry as they correspond to the new crop season in the northern hemisphere29.

Finally, we also notice that the soybean-roll technique is not necessarily optimal for

crush-spread hedging near the end of the year and might be improved by considering

different dates of rollover for each asset, which we leave for future studies.

29Though maturity in May corresponds to the South American new crop season, it does not have the

same effect on intermediary maturities (cf. figure 3)
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Figure 3: This figure displays the open interest associated to each contract maturity at a given time.

The respective contracts correspond to the months of January (ZSF5), March (ZSH5), May (ZSK5),

July (ZSK5), August (ZSQ5), September (ZSU5), November (ZSX5) for the year 2015, while the final

contract corresponds to January 2016 (ZSF6).

6 Conclusion

We proposed a high-frequency price-cointegration framework in which market microstruc-

ture influences the price-discovery processes of several interrelated assets. Our market-

equilibrium model demonstrates how partially informed traders, who only focus on some

rather than all of these markets, may influence long-term structural relationships such

as price cointegration. We show that an agent with a global view of the markets is nec-

essary to restore the equilibrium, which raises the question of their capacity to enforce

this equilibrium. We indeed demonstrate and observe that the traded volumes on com-

modity by-products, such as soybean meal and soybean oil, positively influence the rank

of the auto-regressive matrix associated to the soybean complex dynamics and hence

the presence or absence of intraday cointegration among related assets. To the contrary,

important potential trading volumes in the main market, the soybean market in our

case, or a lack of liquidity in the secondary markets, ie. soybean meal and oil, act as a

counterbalance and may discourage the fully informed traders from building correcting
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trades to enforce the cointegration relationship. Furthermore, it has been empirically

proven in this article that traded volumes, epitomizing disagreement on market expec-

tations, mainly influence the speed of convergence towards the stationary cointegrated

joint process, rather than the cointegrating vector itself. This finding underpins the rel-

evance of a time-varying cointegrated relationship with respect to market liquidity, so

as to model a dynamic market equilibrium among interrelated assets. Consequently, we

can confirm that asset prices may deviate from the market equilibrium and that market

liquidity conveys crucial information about the joint dynamics of asset values, which is

complementary to the information associated to volatility measures.

We also demonstrate that the role of traded volumes in the market’s capacity to

revert to equilibrium, and thus enforce the cointegration of asset prices, shrinks during

electronic trading sessions. This diurnal phenomenon questions the importance of having

24-hour access to electronic markets, when it only contributes to adding noise and does

not convey information about assets’ fundamental value. Another micro-economic study

based on futures contracts rollover further revealed that the presence of cointegration

among assets is related to the contract maturities traded at a given time. Indeed, some

intermediary contracts’ maturities are not considered by informed traders throughout

the year, thus leaving unused their capacity to counterbalance on an intraday basis the

disturbing influence of partially informed traders.

Finally, from a methodological standpoint, we show that, at high-frequency granu-

larity, filtering techniques are necessary to observe cointegration relationships and that

Epps effects, microstructure noise and idle prices significantly affect parameter estima-

tion. Several robustness tests using different data sets and methodologies confirm our

findings and support our theoretical model.
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Supplementary Materials

A Demonstration Proposition 1

If we consider the equation (12):

λ−1
1 V1 =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

ABS(δ̂)1/γ (28)

we thus obtain the following expression for the sum of each group of investor-expected

price changes:

δ̂ =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

−γ (λ−1
1 V1

)γ
Diag

(
Sgn(δ̂)

)
(29)

by combining it with the equation (10), we then obtain:

∆P =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

−γ (λ−1
1 V1

)γ
Diag

(
Sgn(δ̂)

)

+

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

−γ (λ−1
1 V1

)γ1/γ

= Ω(V1)γDiag
(
Sgn(δ̂)

)
+

(∑
j

λj

)−1∑
j

λjαj(Pt−1)Ω(V1)

where:

Ω(V1) =

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

−1

λ−1
1 V1

If we assume that γ = 1 and assume that

α1 =

 1
φ1β′Pt−1

0

0 1
φ2β′Pt−1

 (30)

α2 =

− 1
φ1β′Pt−1

0

0 0

 (31)

and

α3 =

0 0

0 − 1
φ2β′Pt−1

 (32)
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we can then rewrite (14) as:

∆P =

Diag (Sgn(δ̂)
)

+

(∑
j

λj

)−1∑
j

λjαj(Pt−1)

Ω(V1)

Provided that:

α1(Pt−1)−

(∑
j

λj

)−1∑
j

λjαj(Pt−1) =

 1
φ1β′Pt−1

0

0 1
φ2β′Pt−1


−

(∑
j

λj

)−1
 λ111

φ1β′Pt−1
0

0
λ221

φ2β′Pt−1

+

− λ112
φ1β′Pt−1

0

0 0

+

0 0

0 − λ223
φ2β′Pt−1


= αj(Pt−1)(Pt−1)−

(∑
j

λj

)−1
λ11

1 − λ11
2 0

0 λ22
1 − λ22

3

α1(Pt−1)


≡ [I − λ?]α1(Pt−1) (33)

with:

λ? =

(∑
j

λj

)−1
λ11

1 − λ11
2 0

0 λ22
1 − λ22

3

 (34)

We can subsequently rewrite the expression of Ω(V1), such that:

Ω(V1) = α1(Pt−1)−1 [I − λ?]−1 λ−1
1 V1

and thus simplify the equation (14), such that:

∆P =
[
Diag

(
Sgn(δ̂)

)
+ λ?α1(Pt−1)

]
Ω(V1)

= Diag
(
Sgn(δ̂)

)
α1(Pt−1)−1 [I − λ?]−1 λ−1

1 V1 + λ? [I − λ?]−1 λ−1
1 V1

= α1(Pt−1)−1AV1 + BV1 (35)

=

φ1β
′Pt−1 0

0 φ2β
′Pt−1

AV1 + BV1 (36)

= Π?(V1)Pt−1 + BV1 (37)
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where:

Π? = ΦAV1β
′

Φ =

φ1 0

0 φ2


A = Diag

(
Sgn(δ̂)

)
[I − λ?]−1 λ−1

1

B = λ? [I − λ?]−1 λ−1
1

λ? =

(∑
j

λj

)−1
λ11

1 − λ11
2 0

0 λ22
1 − λ22

3


B Kalman Filter and Kalman Smoother

To take into account both the microstructure noise in the observation equation (20) and

the innovation covariance structure of the cointegrated process in the transition equation

(19), we combine the Kalman filter and smoother proposed by Shumway & Stoffer (1982)

and Seong et al. (2013), such that for t = 1, . . . , T :

xt−1
t = Fxt−1

t−1, P t−1
t = FP t−1

t−1F
′ +GΣG′

xtt = xt−1
t +Kt(yt −Htx

t−1
t ), P t

t = P t−1
t −KtHtP

t−1
t ,

where xst = El(xt|y1:s), P
s
t = covl(xt|y1:s) and P s

t,t−1 = covl(xt, xt−1|y1:s). El and covl

are the conditional expectation and conditional covariance given θl the set parameters at

iteration l. Moreover, based on Shumway & Stoffer (1982), where microstructure noise is

taken into account, the Kalman gain is defined as follows:

Kt = P t−1
t H ′t(HtP

t−1
t H ′t +Rt)

−1 (38)

We set the initial values x0
0 ∼ N(δ(l),Λ). When we enter the Kalman smoother

procedure, with microstructure noise taken into consideration, we denote the backward

recursions as follows:

ret = H ′t(HtP
t−1
t H ′t +Rt)

−1(yt −Htx
t−1
t ) + L′tret+1 (39)

Ret = H ′t(HtP
t−1
t H ′t +Rt)

−1Ht + L′tRet+1Lt (40)
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where we set initial values rT+1 = 0, RT+1 = 0 and Lt = F (Is −KtHt).

Following Seong et al. (2013), we write the smoothing equations as follows:

xTt = xt−1
t + P t−1

t ret, P T
t = P t−1

t − P t−1
t RetP

t−1
t for t = 1, . . . , T, (41)

P T
t+1,t = (Is − P t

t+1Ret+1)LtP
t−1
t for t = 1, . . . , T − 1. (42)

C EM algorithm and Gradient

C.1 EM Algorithm

In order to maximise the complete-data log-likelihood, we consider the EM algorithm,

which consists in a two-step recursive method.

Step 1: The Expectation step:

The complete data log-likelihood can be written in two different manners:

logL(θ;x1:T , y1:T ) = −1

2
log |Λ| − 1

2
(x0 − δ)′Λ−1(x0 − δ)

− T

2
log |Σ| − 1

2

T∑
t=1

(Axt − ΓBxt−1)′Σ−1(Axt − ΓBxt−1)

− T

2
log |R| − 1

2

T∑
t=1

(yt −Htxt)
′R−1(yt −Htxt) (43)

where:

A =
[
In − In On×(np−2n)

]
;

Γ =
[
κ,Γ1 Γ2 . . . Γp−1

]
;

B =



β′ Oh×n Oh×n . . .

In −In On . . .

On In −In . . .
...

...
...

. . .

On . . . . . . In


;
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with a normalized β = [Ih β
′
0], β0 being the (n− h)× h matrix to be estimated and x0 ∼

N(δ,Λ). We can also decompose the second term to facilitate the gradient derivations

with respect to the sub-matrix β0:

logL(θ;x1:T , y1:T ) = −1

2
log |Λ| − 1

2
(x0 − δ)′Λ−1(x0 − δ)

− T

2
log |Σ| − 1

2

T∑
t=1

[
Axt − Γ∗B∗xt−1 −

{
κ⊗ (Dxt−1)′

}
vec(β0)

]′
Σ−1

[
Axt − Γ∗B∗xt−1 −

{
κ⊗ (Dxt−1)′

}
vec(β0)

]
− T

2
log |R| − 1

2

T∑
t=1

(yt −Htxt)
′R−1(yt −Htxt) (44)

Where:

Γ∗ =
[
κV ′1 Γ1 Γ2 . . . Γp−1

]
;

D =
[
V ′2 0(n−h)×(np−n)

]
;

B∗ =


In −In On . . .

On In −In . . .
...

...
...

. . .

On . . . . . . In


where we define two sub-matrices:

V ′1 = [Ih 0h×(n−h)]

and:

V ′2 = [0(n−h)×h I(n−h)]

such that V = [V1 V2] = In.

We then consider the expectation of this complete-data log likelihood, conditional on

the observed data set y1:T and the set of parameters θ(l) = {κ(l), β
(l)
0 , γ(l),Σ(l), R(l)}:

Q(θ|θl) = El{logL(θ;x1:T , y1:T |y1:T )} (45)

Step 2: The Maximisation step:

we maximise the conditional expectation Q(θ|θl) with respect to κ, β0, γ, Σ and R. Using

the analytical gradient described in C.2, we thus update the set of parameters θ from θl
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to θl+1 and then go back to the Expectation step.

Regarding the initial setting of the algorithm, we start with a set of parameters θ(0)

such that κ(0), β
(0)
0 and Γ(0) equal the Johansen’s associated estimators while Σ(0) and

R(0) initial values are set to [0.00012, 0; 0, 0.00012]. Furthermore, the initial values of the

latent process used for the Kalman filter, x0
0 ∼ N(δ(0),Λ), are normally distributed with

δ(0) = y1:p and Λ = In. Then, we iteratively update the parameters using the expectation

and maximisation steps (the hyper parameter δ(0) should also be updated and replaced

by the estimator xT0 , the conditional expected value given θ(l+1) that we obtained through

the Kalman filter and smoother algorithm described in the Supplementary Material B)

until the improvement of the log-likelihood innovations form (Shumway & Stoffer 1982):

logL(θ(l+1); y1:T ) = −1

2

T∑
t=1

log
∣∣HtP

t−1
t H ′t +R(l+1)

∣∣
− 1

2

T∑
t=1

(
yt −Htx

t−1
t

)′ (
HtP

t−1
t H ′t +R(l+1)

)−1 (
yt −Htx

t−1
t

)
(46)

is less than a predetermined constant. Where xst = E(l+1)(xt|y1:s) and P s
t = cov(l+1)(xt|y1:s)

conditional on θ(l+1).

C.2 EM Gradient Derivation

In order to update β0, Γ, Σ and R, we consider the following demonstrations of the com-

plete log-likelihood gradient with respect to the parameters θ. For the ease of notation,

we consider that:

Mjk =
T∑
t=1

El(xt−jx
′
t−k|y1:T ) =

T∑
t=1

(P T
t−j,t−k + xTt−jx

′T
t−k) (47)

for j, k = 0, 1.

C.2.1 Derivation with Respect to β0

Considering the complete-data log-likelihood formula (46) and if we assume that:

M =
[
Axt − Γ∗B∗xt−1 −

{
κ⊗ (Dxt−1)′

}
vec(β0)

]
M∗ =

[{
κ⊗ (Dxt−1)′

}
vec (β0)

] (48)
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then, basing on the following properties:

(AB)′ = B′A′

(A⊗B)′ = A′ ⊗B′

(A + B)′ = A′ + B′

we can write:

M ′ = (Axt)
′ − (Γ∗B∗xt−1)′ − vec (β0)′ {κ′ ⊗ (Dxt−1)}

M∗′ = vec (β0)′ {κ′ ⊗ (Dxt−1)}

Furthermore, provided that:

A = Tr(A) if A = a (scalar)

we have:

logL = Tr(logL)

Then, provided that:

Tr(A + B) = Tr(A) + Tr(B)

∂(A + B) = ∂(A) + ∂(B)

∂A = 0 (if A is a constant)

(Σ−1)′ = Σ−1 (Σ is a covariance matrix)

∂

∂X
Tr(AX) =

∂

∂X
Tr(XA) = A′

∂

∂X
Tr(AX′) =

∂

∂X
Tr(X′A) = A

∂

∂X
Tr(X′AX) = 2AX
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we thus obtain:

∂ logL
∂ vec (β0)

= −1

2

T∑
t=1

∂

∂ vec (β0)

[
Tr
(
M ′Σ−1M

)]
= −1

2

T∑
t=1

∂

∂ vec (β0)

[
Tr
(
−M∗′Σ−1(Axt)− (Axt)

′Σ−1M∗

+M∗′Σ−1(Γ∗B∗xt−1) + (Γ∗B∗xt−1)′Σ−1M∗

+M∗′Σ−1M ′)]
= −1

2

T∑
t=1

−2
(
{κ′ ⊗ (Dxt−1)}Σ−1 (Axt − Γ∗B∗xt−1)

)
− 1

2

T∑
t=1

2
(
{κ′ ⊗ (Dxt−1)}Σ−1

{
κ⊗ (Dxt−1)′

})
vec(β0)

Finally, based on the following property:

Σ−1Axt = vec(Σ−1Axt) = vec((Σ−1Axt)
′)

Σ−1Γ∗B∗xt−1 = vec((Σ−1Γ∗B∗xt−1) = vec((Σ−1Γ∗B∗xt−1)′)

vec(AXB) = (B′ ⊗A) vec(X)

(A⊗B)(C⊗D) = AC⊗BD

vec(A + B) = vec(A) + vec(B)

we thus can rewrite the previous expression as:

∂ logL
∂ vec (β0)

= vec

{
T∑
t=1

Dxt−1x
′
tA
′Σ−1κ

}

− vec

{
T∑
t=1

Dxt−1x
′
t−1(Γ∗B∗)′Σ−1κ

}

−

[
(κ′Σ−1κ)⊗

T∑
t=1

{
Dxt−1x

′
t−1D

′}] vec (β0)

Then, using again the following property of the vectorization of a matrix:

vec(A + B) = vec(A) + vec(B)
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we can write:

2
T∑
t=1

[
vec
{
Dxt−1

(
x′tA

′Σ−1
)
κ
}
− vec

{
Dxt−1

(
x′t−1B

∗′Γ∗′Σ−1
)
κ
}

−κ′Σ−1κ⊗
(
Dxt−1x

′
t−1D

′)) vec (β0)] = 0

vec
{
DM10A

′Σ−1κ−DM11B
∗′Γ∗′Σ−1κ

}
= κ′Σ−1κ⊗DM11D

′ vec(β0)

vec(β0) = (κ′Σ−1κ⊗DM11D
′)−1 vec

{
DM10A

′Σ−1κ−DM11B
∗′Γ∗′Σ−1κ

}
vec(β0) = (κ′Σ−1κ)−1 ⊗ (DM11D

′)−1 vec
{
DM10A

′Σ−1κ−DM11B
∗′Γ∗′Σ−1κ

}
Considering that Σ is a covariance matrix satisfying Σ−1 = Σ, we have:

vec(β0) = vec
{

(DM11D
′)−1(DM10A

′Σ−1κ−DM11B
∗′Γ∗′Σ−1κ)[(κ′Σ−1κ)−1]′

}
where we can rewrite [(κ′Σ−1κ)−1]′ as follows:

[(κ′Σ−1κ)−1]′ = [(κ′Σ−1κ)′]−1 = [κ′(Σ−1)′κ]−1 = [κ′Σ−1κ]−1

Accordingly, we obtain:

vec(β0) = vec
{

(DM11D
′)−1(DM10A

′Σ−1κ−DM11B
∗′Γ∗′Σ−1κ)[κ′Σ−1κ]−1

}
which eventually leads to the gradient formula that we use to update the parameter β0,

given the other parameters associated to the current iteration:

β
(l+1)
0 = (DM11D

′)−1(DM10A
′Σ(l)−1κ(l) −DM11B

∗′Γ∗(l)′Σ(l)−1κ(l))[κ(l)′Σ(l)−1κ(l)]−1

C.2.2 Derivation with Respect to Γ

Considering the complete-data log-likelihood formula (44), we can write the derivative

with respect to Γ as:
∂ logL
∂Γ

= −1

2
· ∂
∑T

t=1 W (Γ)

∂Γ

with:

W (Γ) =
(
x′tA

′ − x′t−1B
′Γ′
)

Σ−1 (Axt − ΓBxt−1)

=
(
x′tA

′Σ−1 − x′t−1B
′Γ′Σ−1

)
(Axt − ΓBxt−1)

= x′tA
′Σ−1Axt − x′tA′Σ−1ΓBxt−1 − x′t−1B

′Γ′Σ−1Axt + x′t−1B
′Γ′Σ−1ΓBxt−1,

where:

w1 = x′tA
′Σ−1ΓBxt−1
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w2 = x′t−1B
′Γ′Σ−1Axt

w3 = x′t−1B
′Γ′Σ−1ΓBxt−1

Basing on the following properties:

Tr(ABC) = Tr(CAB) = Tr(BCA)

= Tr(CAB) = Tr(BCA)

we obtain:
∂w1

∂Γ
=

∂

∂Γ
Tr
[
x′tA

′Σ−1ΓBxt−1

]
=

∂

∂Γ
Tr
[
Bxt−1x

′
tA
′Σ−1Γ

]
=
(
Bxt−1x

′
tA
′Σ−1

)′
= Σ−1Axtx

′
t−1B

′

while:
∂w2

∂Γ
=

∂

∂Γ
Tr
[
x′t−1B

′Γ′Σ−1Axt
]

=
∂

∂Γ
Tr
[
Σ−1Axtx

′
t−1B

′Γ′
]

= Σ−1Axtx
′
t−1B

′

(49)

For w3 we consider the following property:

(Σ−1)′ = Σ−1 (Σ is a covariance matrix)

Bxt−1x
′
t−1B

′ = Bxt−1(Bxt−1)′ =
(
Bxt−1x

′
t−1B

′)′
∂

∂X
Tr(X′AXB) = AXB + A′XB′

to write its derivative with respect to Γ as follows:

∂w3

∂Γ
=

∂

∂Γ
Tr
[
x′t−1B

′Γ′Σ−1ΓBxt−1

]
=

∂

∂Γ
Tr
[
Γ′Σ−1ΓBxt−1x

′
t−1B

′]
= 2Σ−1ΓBxt−1x

′
t−1B

′

Therefore, we obtain:

∂ logL
∂Γ

= −1

2
(0− ∂w1

∂Γ
− ∂w2

∂Γ
+
∂w3

∂Γ
)

= −1

2
(0− xtAx′t−1B

′Σ−1 − Σ−1Axtx
′
t−1B

′ + ΓBxt−1x
′
t−1B

′Σ−1 + ΓΣ−1Bxt−1x
′
t−1B

′)

= AM00B
′Σ−1 − ΓBM11B

′Σ−1
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which, following the first-order condition ∂ logL
∂Γ

= 0, eventually leads to the gradient

formula that we use to update the parameter matrix Γ, given the value of the parameter

β
(l+1)
0 :

Γ(l+1) = (AM01B
(l+1)′)(B(l+1)M11B

(l+1)′)−1

C.2.3 Derivation with Respect to Σ

To obtain the derivative of the complete-data log-likelihood formula (44) with respect to

Σ, we note:

V
(
Σ−1

)
= (Axt − ΓBxt−1)′Σ−1 (Axt − ΓBxt−1)

=
(
x′tA

′ − x′t−1Γ′B′
)

Σ−1 (Axt − ΓBxt−1)

= x′tA
′Σ−1Axt − x′tA′Σ−1ΓBxt−1 − x′t−1Γ′B′Σ−1Axt + x′t−1Γ′B′Σ−1ΓBxt−1

Then using the following property:

∂a′Xb

∂X
= ab′

we get:
∂ (BΓxt−1)′

∑′Axt
∂Σ−1

= (BΓxt−1) (Axt)
′ = BΓxt−1x

′
tA
′

Accordingly, we can write:∑T
t=1 (V (Σ−1))

∂
∑−1 =

T∑
t=1

(
x′tA

′Axt − x′tAΓBxt−1 −BΓxt−1x
′
tA+ x′t−1B

′Γ′ΓBxt−1

)
= AM00A

′ − ΓBM10A
′ −BΓM10A

′ + ΓBM11B
′Γ′

Since we know that:

Γ(BM11B
′) = AM01B

′

Γ(BM11B
′) = (BM10A

′)′

[(ΓBM11B
′)′]′ = (BM10A

′)′

(BM11B
′Γ′)′ = (BM10A

′)′

BM11B
′Γ′ = BM10A

′

we can rewrite (50) as:∑T
t=1 (V (Σ−1))

∂
∑−1 = AM00A

′ − ΓBM10A
′ −BΓM10A

′ +BΓM10A
′

= AM00A
′ − ΓBM10A

′
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Therefore, we have:

∂ logL
∂Σ−1

=
T

2
log
∣∣Σ−1

∣∣− 1

2
·
∑T

t=1 (V (Σ−1))

∂
∑−1

=
T

2
Σ− 1

2
(AM00A

′ − ΓBM10A
′)

which, following the first-order condition ∂ logL
∂Σ−1 = 0, eventually leads to the gradient

formula that we use to update the parameters matrix Σ, given the value of the parameters

β
(l+1)
0 and Γ(l+1):

Σ(l+1) = T−1(AM00A
′ − Γ(l+1)B(l+1)M10A

′)

C.2.4 Update of the Parameter Matrix R

Using the set of updated parameters θ(l+1) to run the Kalman filter and Kalman smoother,

we can then update the matrix R as follows:

R(l+1) = T−1

T∑
t=1

[(
yt −Htx

T
t

) (
yt −Htx

T
t

)′
+HtP

T
t H

′
t

]
(50)

However, following (Shumway & Stoffer 1982), when, for a given t, there is missing data

within yt, we then consider that there is no contribution to R(l+1) and just add the

associated covariance estimate from the previous iteration. More precisely, let’s define a

partition of the q×1 vector yt = (y
(1)
t , y

(2)
t ), where y

(1)
t corresponds to the q1×1 observed

elements and y
(2)
t to the q2 × 1 unobserved portion. We can then rewrite the observation

equation (20) as: y(1)
t

y
(2)
t

 =

H(1)
t

H
(2)
t

xt +

w(1)
t

w
(2)
t


where H

(1)
t and H

(2)
t are respectively q1 × n and q2 × n matrices, and we assume uncor-

related errors:

cov

w(1)
t

w
(2)
t

 =

R11 0

0 R22


Then, if, for a given t, there is missing data within yt, the contribution Ct to the matrix

R(l+1) defined by the equation (50) will be given by:

Ct = T−1

y(1)
t −H

(1)
t sTt

0

y(1)
t −H

(1)
t sTt

0

′ +
H(1)

t

0

P T
t

H(1)
t

0

′ +
0 0

0 R
(l)
22

′
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D Relative Market Information Share

Following the Granger representation theorem and assuming the presence of n − h unit

roots associated to the polynomial characterising the cointegration equation (17), the

vector error correction model can be rewritten as a VAR representation:

zt = Ξ
t∑
i=1

et + Ξ∗(L)et (51)

where:

Ξ = β⊥

[
κ′⊥

(
IK −

p−1∑
j=1

Γj

)
β⊥

]−1

κ′⊥ (52)

and Ξ∗(L) is a matrix polynomial in the lag operator. The first element of eq. (51)

corresponds to the permanent component of the marginal price dynamics, which is per-

manently impounded into the individual prices and embodies new information about the

given asset. The second element is a stationary process with a zero mean, which repre-

sents a transient effect on the price. Gonzalo & Granger (1995) have demonstrated that

this permanent-transient model is equivalent to a common-factor model, where the first

part of the equation (51) can be expressed as:

Ξ
t∑
i=1

et = A1ft (53)

where A1 is any basis of β⊥, the null space associated to β, and where ft, named the

common factor, is equal to κ′⊥zt. Then, the ij relative market information share proposed

by Hasbrouck (1995) can be defined as:

Si
Sj

=
γiΣii

γjΣjj

(54)

where γi corresponds to the i-th element of the first row in the matrix Ξ. This measure-

ment of the relative contribution of each asset to the common factor has been demon-

strated to be equivalent to considering the ratio of the respective components of the vector

κ′⊥ weighted by the variance-covariance matrix of the innovations Baillie et al. (2002).

E Robustness Tests

To confirm the validity and robustness of our results, we propose a set of robustness

tests for the data pre-processing methods that we retained for the trading session and

the rolling techniques, as well as tests regarding data frequency.
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E.1 Trading Sessions and Rolling Techniques

We first verify in this section whether there is any diurnal effect with regard to cointegra-

tion. This phenomenon has been commonly observed in financial markets high-frequency

data on price level (Harris 1986) and, especially, price volatility (Engle & Sokalska 2012,

Christensen et al. 2018). In this literature, we generally assume that the stochastic

dynamics is frictionless within the day and thus consistent, whereas markets’ microstruc-

tures and associated frictions between days significantly perturb price dynamics, making

its modelling much more hazardous. The tables below (table 7, table 8 and table 9) con-

firm this finding and show that cointegration is mainly playing during session 2 (market

official trading hours) of a trading day and significantly less so during session 1 (electronic

trading hours). In addition, prices in session 1 are so greatly affected by market noise

that even the combining of both sessions yields no additional information about the joint

dynamics of asset prices and, even worse, prevents identification of the cointegrated days.

This result somewhat questions the relevance and informative content of the electronic

trading sessions. The fact that only the official trading hours are informative about the

joint dynamics of financial assets might be explained by the absence of manufacturers

outside of the official trading hours and the prevalence of traders during electronic ses-

sions. Therefore, to mitigate the impact of this diurnal effect on our study of the joint

dynamics of asset prices, we mainly retained daily samples and aggregate volume and

volatility measures at daily frequencies.

We also study the extent to which the rolling techniques affect the cointegration rela-

tionship. According to table 8, we find that the rolling technique based on soybean open

interest, which we retained for our study, is the most efficient technique for appreciating

the cointegration process. This can be associated with the fact that some maturities on

soft commodities are not even considered by manufacturers, who are thus not enforcing,

through trades, the convergence of the crush spread towards its long-run equilibrium

price. The independent rolling technique also performs well, although it is less informa-

tive at the monthly frequency.

Nevertheless, whatever rolling technique we consider, the traded volumes, particularly

those associated with soymeal, are always statistically significant in explaining the rank
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of matrix Π and thus the presence or absence of cointegration within intraday prices30

Furthermore, the associated coefficient’s sign stays the same, regardless of the rolling

technique used.

Table 7: Cointegration Summary of Session 1

every 1 minute dataa day month quarter

ZS Open Interest Rollover 52 2 1

Independent Rollover 53 4 1

Monthly Rollover 49 4 1

30s Monthly Rollover 33 2 0

a This table records the occurrence of cointegration for different

sample sizes. Day/month/quarter respectively indicates

the number of cointegration occurrences when considering

daily/monthly/quarterly samples of one-minute data from

session 1 only.

Table 8: Cointegration Summary of Session 2

every 1 minute dataa day month quarter

ZS Open Interest Rollover 180 11 3

Independent Rollover 181 7 3

Monthly Rollover 132 6 0

30s Monthly Rollover 131 2 0

a This table records the occurrence of cointegration for different

sample sizes. Day/month/quarter respectively indicates

the number of cointegration occurrences when considering

daily/monthly/quarterly samples of one-minute data from

session 2 only.

30For the sake of clarity, table 3 only shows results for the rolling technique based on soybean open

interest, but similar tables for the other rolling techniques are available on demand.
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Table 9: Cointegration Summary of Session 1 + Session 2

every 1 minute dataa day month quarter

ZS Open Interest Rollover 52 2 1

Independent Rollover 54 3 0

Monthly Rollover 53 4 2

30s Monthly Rollover 48 0 1

a This table records the occurrence of cointegration for different

sample sizes. Day/month/quarter respectively indicates

the number of cointegration occurrences when considering

daily/monthly/quarterly samples of one-minute data from both

session 1 and session 2.

E.2 Data Frequency

In this section, we verify how the frequency of the data studied may impact the results.

The market’s regular trading hours (four hours and fifty minutes per day, labeled ’session

2’ in this article) yield 290 data points per trading day using the 1-minute data set and

only 145 when using a 2-minute data set. According to Hakkio & Rush (1991), the gain

in the degrees of freedom as we increase the frequency of the observations for a given

sample length is more apparent than real when it comes to testing and estimating a

cointegration relationship. The authors indeed demonstrated that it is not so much the

data frequency or the number of points within a given period of time which improve the

power of the cointegration test as the length of the period of time under scrutiny. How-

ever, they only compared monthly, quarterly and annual simulated data, and hence did

not consider high-frequency data and the associated microstructure noise. Furthermore,

this conclusion does not hold when dealing with time-varying cointegration (Bierens &

Martins 2010, Koop et al. 2011) and by extension, as in our case, volume-varying cointe-

gration.

The two-minute daily data set allows us to detect 229 days of cointegration (versus

180 using the 1-minute daily data set), while the monthly sampled data set only displays

9 months with monthly cointegration (versus 11 using the 1-minute monthly data set).
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The quarterly sampled data set reveals only 3 cointegrated quarters (versus 3 using the 1-

minute quarterly data set), suggesting that there is still residual microstructure noise after

filtering the 1-minute data set using our technique, the effect of which is smoothed when

considering less frequent intraday data. This does not affect our conclusions, however,

regarding the relationship between cointegration and traded volumes.
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