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1. Introduction 

Accurate forecasts of crop yield are highly valuable from several perspectives. From a market 

perspective, yield forecasts are an essential component of supply, demand, and price forecasting. 

From a policy perspective, yield forecasts are important to governments around the world to assess 

drought impacts and food insecurity. In addition, these forecasts are crucial for farmers and 

agribusiness firms in developing marketing and risk management plans.  

Given the importance of crop yield forecasts, it is no surprise that there is a very large 

literature on the relationship between weather, technology, and crop yields dating back to the early 

1900s (Tannura, Irwin, and Good, 2008). Broadly speaking, this literature shows that summer 

precipitation and air temperature directly influence yield potential, along with other factors 

including soil quality, planting date, disease, insects, and technological improvements from seed 

genetics, fertilizers, and producer management techniques.   

Kaufmann and Snell (1997) and others observe that the various methods of forecasting 

crop yields can be categorized into three groups. The first group consists of crop simulation models 

that directly assess the effects of weather and soil properties on plant physiology. While such 

models have a strong foundation in biological theory and experimental data, they are nonetheless 

highly complex and difficult to generalize to aggregate areas such as crop reporting districts or 



states (e.g., Walker 1989). The second group consists of multiple regression models that estimate 

the relationship of weather and technology to crop yields. Regression models are relatively simple 

to specify and estimate for aggregate areas, an advantage when forecasting, but aggregation of 

variables across time and space can harm accuracy (Shaw, 1964). The third group consists of 

models based on remote-sensing data collected from earth-orbiting satellites. By far the most 

popular approach is to convert remote-sensing data into a vegetative index (NDVI) and correlate 

this to yield (e.g., Sakamoto, Gitelson, and Arkebauer, 2013). While there has been a great deal of 

work along these lines, the advantage in forecasting crop yields has not been proven convincingly 

to date.  

There is still another approach to crop yield forecasting that is widely used by market 

analysts in both the private and public sectors. The U.S. Department of Agriculture (USDA) 

publishes weekly condition ratings for important crops during the growing season. The condition 

ratings reflect the subjective judgment of nearly 4,000 observers about crop yield prospects and 

are reported as the percentage of a crop rated in five mutually exclusive and exhaustive categories: 

very poor, poor, fair, good, and excellent. A popular approach is to use the sum of good and 

excellent condition ratings to build a simple condition index and relate this to trend-adjusted crop 

yields. Several representative articles applying this approach to forecasting U.S average corn and 

soybean yields can be found at the farmdoc daily website (Irwin and Good, 2017a,b; Irwin and 

Hubbs, 2018a,b,c,d).  

Despite the widespread use of crop condition ratings to forecast crop yields in the private 

and public organizations, there are only a few studies in the academic literature that investigate 

condition-based forecasts. The general idea behind these studies is to transform the ordinal 

condition ratings to a numeric condition index, and then construct a time-series model between 



yields and the condition index. For example, Kruse and Smith (1994) developed a weighting 

system that estimates a changing yield weight for each crop condition class in the growing season 

for corn and soybean. By multiplying each crop condition ratings by its yield weights, they 

computed an average in-sample yield estimate at state-level. Fackler and Norwood (1999) built a 

similar state-level yield forecasting model for corn, cotton, soybean, and spring wheat with 

estimated yield weight that is unchanging throughout the growing season for each crop condition 

level. They showed that for each condition class, the product of estimated yield weight and 

condition ratings reflects its average yields. Bain and Fortenbery (2017) used fixed weights to 

construct a condition index in a yield forecasting model for wheat. Their condition index is based 

on a straightforward system where for the lowest very poor condition is assigned a weight of 0, 

and as the condition increase by one level, the corresponding weight will increase by 0.25 until it 

reaches the highest excellent condition with a weight of 1.  

Most recently, Begueria and Maneta (2020) developed a sophisticated two-stage yield 

forecasting model based on crop condition ratings for corn, cotton, soybean, and winter wheat at 

the state level. They argue that spatial and temporal differences in crop condition information 

should be directly modeled before making yield forecasts. Hence, the authors developed a 

cumulative link mixed model to transform raw condition data to a continuous and almost normal-

distributed crop condition index. After removing space and time effects, they argue that maximum 

information can be extracted from crop condition ratings, which offers a better possibility of 

providing unbiased and accurate yield forecasts. Begueria and Maneta (BM) purport that their 

modeling approach achieves large improvements in accuracy over simpler condition-based 

forecasts, such as Irwin and Good (2017a,b).  



The improvements in forecast accuracy reported by BM are interesting for three reasons.  

First, the finding that a complex model beats simpler models in terms of forecast accuracy runs 

counter to a large body of literature on forecasting. Armstrong (2001, p. 693) summarizes the 

evidence as “…showing that while some complexity may improve accuracy, seldom does one need 

highly complex methods. In some studies, complexity harmed accuracy.” The results provided by 

BM may represent an important exception to this general result. Second, the forecast results in 

Begueria and Maneta model (BM model, hereinafter) are based on a cross-validation procedure 

that leaves out one observation at a time and forecasts the “missing observation” regardless of its 

ordering in time. This procedure is only applied to the second stage of the estimation as well. This 

approach is quite different from the recursive out-of-sample procedures that are standard in the 

time-series forecasting literature. Third, BM did not compute forecast error statistics for simpler 

models using the same data set as in their study, but, rather, relied on forecast statistics reported in 

the original articles.  

The purpose of this study is to conduct a forecast competition between BM model and 

simpler crop condition models in forecasting U.S. average corn and soybean yields. Specifically, 

we compare the forecast accuracy of BM model to Irwin and Good (2017a,b) and Bain and 

Fortenbery (2017) models. The data for the study consists of weekly state and national crop 

condition ratings from 1986 through 2022 for corn and soybean. To evaluate the predictability of 

all yield forecasting models, we use data from 2000 through 2022 as the out-of-sample period. 

We first recursively estimate all yield forecasting models and provide true out-of-sample yield 

forecasts. Next, we apply the modified Diebold-Mariano test to conduct a weekly pair-wise 

comparison between BM model and its competitors. Test results suggest that BM model does not 

have a systematic superior predictability than other more straightforward yield forecasting 



models. We also apply the Model Confidence Set tests to select the best individual yield 

forecasting models. Moreover, we add the composite forecasts as the arithmetic average of the 

five individual yield forecasts in the set of models. Test results for individual yield forecasting 

models suggest early in the growing season, Irwin and Good Bias Adjustment model is the best 

model, and by the end of growing season model BM model and Bain and Fortenbery model are 

the two models selected out with the best yield forecasting performance. When we include 

composite forecasts from Equal Weighted model, test results show composite forecasts provide 

the most accurate yield predictions. However, test statistics are not significant, indicating all best 

models fail to outperform their competitors. Last, we apply the multi-horizon average Super 

Predictive Ability (aSPA) test developed by Quaedvlieg (2021) to compare BM model with its 

four competitors across the entire growing season. Again, test results indicate that BM model 

fails to provide more accurate yield forecasts than the competing and simpler forecasting models.  

2. Data 

2.1 Crop condition ratings 

From roughly late April until the end of November each growing season, USDA weekly Crop 

Progress reports provide progress and condition ratings for corn and soybean in 18 major 

producing states. The reports are published on the first business day of the week after 4:00 pm 

Eastern time.  Estimates in the report are based on non-probability subjective surveys conducted 

by nearly 4,000 local crop observers, who are drawn from the ranks of extension agents, USDA 

Farm Service Agency (FSA) staff, elevator managers, and other agricultural professionals.  Each 

local observer follows the standard definitions and guidelines provided by the USDA to conduct 

assessments of crops in their local area. Data are reported on the progress of producer activities 

(e.g., planting and harvesting), various phenological stages of development (e.g., emergence, 



flowering), and crop condition ratings. It is important to emphasize that weekly observations are 

entirely subjective and the result of visual field observations, direct conversations with farmers, 

and expert local knowledge.  For this reason, the data collection process for USDA Crop Progress 

reports can be described as a system of “people as crop sensors.” Finally, state-level estimates are 

based on weighting of local observer estimates, usually at the county level, and national-level 

estimates are based on weighting of each state’s planted acreage estimate from the previous year 

(NASS, 2021; Irwin and Good, 2017a).  

The data released in the weekly Crop Progress report are followed closely by grain market 

participants. For example, Lehecka (2014) notes that these reports are among the most requested 

publications distributed by the USDA between monthly Crop Production and World Agricultural 

Supply and Demand Estimates (WASDE) reports. Using event study methods, Lehecka shows the 

strongest corn and soybean futures market reactions are found in July and August, when weather 

conditions are most critical for crop development. He also finds that market reactions have 

increased over time.  

Lehecka’s work shows that Crop Progress reports have substantial informational value to 

participants in the grain futures markets. As discussed above, this is especially true during the heart 

of the summer growing season for corn and soybean. It is during these months that crop condition 

ratings take center stage. The ratings are reported in five exhaustive categories as follows (NASS, 

2021): 

Very Poor – Extreme degree of loss to yield potential, complete or near crop failure. Pastures 

provide very little or no feed considering the time of year. Supplemental feeding is 

required to maintain livestock condition. 



Poor – Heavy degree of loss to yield potential which can be caused by excess soil moisture, 

drought, disease, etc. Pastures are providing only marginal feed for the current time 

of year. Some supplemental feeding is required to maintain livestock condition. 

Fair – Less than normal crop condition. Yield loss is a possibility but the extent is unknown. 

Pastures are providing generally adequate feed but still less than normal for the time 

of year. 

Good – Yield prospects are normal. Moisture levels are adequate and disease, insect damage, 

and weed pressures are minor. Pastures are providing adequate feed supplies for the 

current time of year. 

Excellent – Yield prospects are above normal. Crops are experiencing little or no stress. 

Disease, insect damage, and weed pressures are insignificant. Pastures are 

supplying feed in excess of what is normally expected at the current time of year. 

The ratings for a given crop in each condition category are expressed as a percentage, reflecting 

the proportion of the crop rated in a particular category. Since the categories are exhaustive, the 

percentages in the five categories sum to 100.  

We collected all weekly condition ratings for corn and soybean at the state and national 

level starting in 1986, when the program was established, through 2022. For each year, the 

coverage of weeks in the growing season is not the same because ratings do not begin until a 

substantial part of the crop has emerged and do not end until most of the crop is mature. Since 

dates for emergence and maturity vary from year-to-year, the beginning and ending dates for 

condition ratings also vary. To have a consistent evaluation period for all competing models, we 

use weeks 23 – 39 for corn and weeks 25 – 39 for soybean to evaluate the weekly yield forecasts. 

The ranges of these weeks roughly correspond to early June to late September for corn and late 



June to late September for soybean. Corn and soybean ratings are available for all years during the 

sample period for these weeks and for all but a few of the 18-states included for each crop in the 

Crop Progress report. 

2.2 Harvested acres  

BM model provides weekly yield forecasts at the state-level for the 18 major-producing states 

included in the Crop Progress report for corn and soybean due to the design of their modelling 

framework. We are interested in yield forecasts at the national level because this is a key 

determinant of market prices rather than yield in any individual state. To compare all competing 

models at the national level, we developed a straightforward method of converting a set of state-

level forecasts to one national level forecast. Specifically, we use the ratio of weighted-average 

yields of 18 states to the national yields. Once the state-level yield forecasts are available, forecasts 

of national yields can be easily calculated using the estimated ratio. For these 18 states, each 

individual state has different productivity for corn and soybean. We use the proportion of 

individual state’s harvested acres out of the total harvested acres of 18 states to estimate the yield 

weight for each state. Each year for each state, we use previous five-year moving-average yield 

weight as a forecast for current year’s yield weight. For the ratio of weighted sum of state-level 

yields to the final estimates of national yields, we apply a similar previous five-year moving-

average procedures to acquire a forecast for the current year’s state-to-national yield ratio.  

Since five-year moving-average procedures are applied to harvested acres, and the first 

year we use the crop condition ratings for yield forecasts is 1986, we collected harvested acres for 

each state from 1976 – 2022. The harvested acres data are obtained from NASS Quick Stats, and 

they are published in the Acreage reports released by NASS each year by the end of June. The 

Acreage report produces the revised harvested acres for the previous year and forecasted harvested 



area for the current year. The timing of the Acreage report roughly lines up with the beginning of 

the forecast window each year.  

2.3 Annual yield estimates  

All weekly yield forecasts are compared to the final yield estimates published at the NASS Quick 

Stats website. As only one five-year moving-average procedure is applied to yields, we collected 

yield data from 1981 through 2022.  

3. Yield Forecasting Models  

3.1 Yield forecasting cycles  

The goal of all yield forecasting models in this study is to provide early yield projections when 

weekly condition ratings are available for corn and soybean. Figure 1 uses corn to illustrate a typical 

forecast cycle. Each year of our sample, the first yield prediction starts in week 23. The yield 

forecasts for week 23 are obtained using crop condition ratings published in this week. Importantly, 

all the forecast models are estimated recursively using samples that end before a given forecast week. 

The out-of-sample period is 2000 through 2022 and forecasts for corn are made for week 23 – week 

39 in each year and for soybean for week 25 – week 39. To evaluate the performance of yield 

forecasting models, we compare the weekly forecasts with final yield estimates published in the 

USDA’s Crop Production Annual Summary report that is released in January after the growing 

season.  

3.2 Begueria and Maneta model  

Begueria and Maneta (BM) model (2021) is the most technically sophisticated model considered in 

this forecast competition. They argue that spatial and temporal differences in crop condition 

information should be directly modeled before making yield forecasts. Hence, BM developed a 



cumulative link mixed model (CLMM) to transform raw condition data to a continuous and almost 

normal-distributed crop condition index (CCI). After removing space and time effects, they argue 

that maximum information can be extracted from crop condition ratings, which offers a better 

possibility of providing unbiased and accurate yield forecasts.  

In formal terms, the first step of BM model is to estimate the CLMM using a probit link 

function to connect ordinal response with numeric factors. The CLMM is specified as: 

              𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗|𝑠, 𝑦, 𝑤)) = 𝜃𝑗 + 𝛽𝑦𝑦 + 𝛽𝑤𝑤 + 𝑣𝑠 + 𝑣𝑦,𝑠𝑦 + 𝑣𝑤,𝑠𝑤 + 𝜖𝑠𝑖 ,                (1) 

where 𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗|𝑠, 𝑦, 𝑤))  is the probability that the 𝑖 th report’s condition ratings are no 

greater than category 𝑗, and 𝑗𝜖[1,4] since there are five condition categories; 𝑠, 𝑦 and 𝑤 are state 

year and week in report 𝑖, respectively; and 𝜃𝑗 is a threshold parameter which remains constant and 

determines the range of the response variable in a certain category 𝑗. There are two fixed effects in 

the model: a long-term (year) effect and a temporal (week) effect. Three random effect components 

are included: state, the interaction between state and year, and the interaction between state and week. 

The error term 𝜖𝑠𝑖  is the unbiased CCI that is specific for each state and is free of any long-term or 

temporal time effects.  

In the second stage of their modeling process, BM develop a mixed model, where the fixed 

effects are the long-term (year) effects and CCI effects and the random effect is conditional on each 

state including the intercept two slopes with the interactions from year and CCI. This model provides 

weekly yield forecasts for each state and is specified as: 

                          𝜇𝑖(𝑠) = 𝛽0 + 𝛽𝑦𝑦𝑖 + 𝛽𝑐𝐶𝐶𝐼𝑖 + 𝑣(𝑠) + 𝑣𝑦(𝑠)𝑦𝑖 + 𝑣𝑐(𝑠)𝐶𝐶𝐼𝑖 + 𝜖𝑖                    (2) 

where 𝜇𝑖(𝑠) is the expected yield at state 𝑠 and time 𝑖, 𝑦𝑖 is the transformed year index at time 𝑖, 

𝐶𝐶𝐼𝑖  is the crop condition index at time 𝑖, 𝛽0 is the global intercept, 𝛽𝑦 is the long-term year effects 

and 𝛽𝑐 is the CCI effect (they are both fixed effects and have the same effects on all the states). 



The BM model treats state as the random components, meaning for different states, they have 

different temporal effects and CCI effects. 

Figure 2 uses corn as an example to illustrate how BM model recursively provide out-of-

sample weekly yield forecasts. Yield forecasts for week 23 in 2000 were estimated with the 

following steps: i) the CLMM model is estimated using crop condition ratings from the first 

published Crop Progress report in 1986 to the most recent report published in week 23 of 2000. 

With the updated model, we can transform and update the ordinal crop condition ratings for all the 

weeks till week 23, 2000. Second, we can estimate the mixed model using the updated CCI and 

other variables in week 23 from 1986 to 1999. Third, updated CCI and year index of week 23, 

2000 were entered in the mixed model and we can obtain a yield projection for week 23, 2000. 

Following these steps, as we move forward in the growing season, we can have weekly updates of 

yield forecasts.  

We also present BM yield forecasts for corn and soybean at the national level. We calculate 

the weighted average yields of 18 states where the weight for each state is the proportion of 

harvested acres. To transform the weighted average yields of 18 states to the national yields, we 

apply the ratio of weighted average yields of 18 states to the national yields. Yield forecasts at 

national level are available from 2000 to 2022.  

3.3 Irwin and Good model 

The design of Irwin and Good model (Irwin and Good, 2017a) makes it applicable for both state-

level and national-level yield forecasts. At the national level, Irwin and Good National model (IG 

National model, hereinafter) is specified as below: 

                                     𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + 𝛽1𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 + 𝛽2𝑆𝑈𝑀𝑡 + 𝜖𝑡                                     (3) 



where 𝑌𝑖𝑒𝑙𝑑𝑡 is national final yield estimates in year 𝑡; 𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 is the time index in year 𝑡; 

𝑆𝑈𝑀𝑡 is the sum of “excellent” and “good” ratings at the end of the season in year 𝑡.  

With corn as an example, Figure 3 illustrates how to provide recursively out-of-sample 

yield forecasts with the model. Yields forecasts for 2000 week 23 are obtained with the following 

steps. First, we run IG National model with time index, the percentage of corn rated in “good” and 

“excellent” conditions at the end of years, and the national final yield estimates from 1986 to 1999. 

Second, the sum of ratings in week 23 and the year index for 2000 are entered in the model to get 

the yield forecasts for week 23, 2000.  

State-level yield forecasts follow the same procedure of national level. Instead of using 

national yield estimates, they use state-level final yield estimates to build Irwin and Good State 

model (IG State model, hereinafter) and eventually receive weekly yield forecasts for each state. 

For individual state, we can also compare the predictability of BM model and IG State model to 

examine if there is a significant trade-off between model complexity and forecast accuracy.  

Irwin and Good (2017b) pointed out that the disadvantage of this straightforward approach 

is that it does not consider the bias in the early weeks’ condition ratings within the growing season. 

Their weekly analysis (Irwin and Good, 2017a) showed that in early weeks the correlations 

coefficients between the sum of “good” and “excellent” ratings and the yields are lower than that 

of final weeks. The reason behind this observation is that, on average, the early weeks’ ratings for 

corn and soybean are over-estimated. Early in the growing season, crops usually are in a normal 

or a better than normal condition. However, for a few years (like drought in 2012), when adverse 

weather conditions occur, crop yields would deteriorate and become worse than normal. This 

would make crop ratings of “good” and “excellent” in the final week lower than that in early weeks, 

which makes the final week’s ratings lower than the average ratings in early weeks. To measure 



the size of bias, we follow definition of bias proposed by Irwin and Hubbs (2018a,c) and specify 

the bias as:  

                                𝑏𝑖𝑎𝑠𝑡 = 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 − 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡,                                (4) 

where 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 is the current year’s sum of “good” and “excellent” ratings at the end 

of growing season and 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 is the sum of “good” and “excellent” ratings of each 

early week in year 𝑡. Because on average final ratings are lower than that of early weeks’ ratings, 

we expect the bias to be negative. To adjust the bias in the early weeks, we need to add the bias 

to the early weeks’ ratings as: 

                                 𝑎𝑑𝑗_𝑒𝑎𝑟𝑙𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑡 = 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 + 𝑏𝑖𝑎𝑠𝑡.                                (5) 

For both corn and soybean, we consider weeks before 31 as the early weeks that need bias 

correction. Therefore, these weeks are week 23 – week 30 for corn and week 25 – week 30 for 

soybean.  

We apply the moving-average procedures to estimate the size of bias. With ten-year and 

five-year moving-average approaches, we first calculate the weekly rating difference between the 

final week and each of the early weeks over the previous ten or five years. Then, as we have the 

average bias for each week of the early weeks, for the current year, we can add the bias to the 

reported ratings to have the adjusted ratings for a week that is in the range of early weeks. For 

some weeks, we do not have consecutive observations in all each year. In these scenarios, we use 

all the data we have from the previous ten or five years, but we might not have all the ten or five 

data points to calculate the average biases. These two approaches are considered as two augmented 

bias-adjusted Irwin and Good models (IG National with Bias Adjustment model, hereinafter)1.  

 
1 Model comparisons between BM model and IG National with Bias Adjustment model with five-year moving 

average approach are available in Online Appendix.  



3.4 Bain and Fortenbery model  

Bain and Fortenbery (2017) fixed weight model (BF model, hereinafter) assigned fixed weights to 

each condition category to transform the ordinal condition ratings to a numerous crop condition 

index (CCI). Below is the definition of fixed weights CCI:  

𝐶𝐶𝐼𝑛𝑑𝑒𝑥 = 100% ⋅ 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 + 75% ⋅ 𝐺𝑜𝑜𝑑 + 50% ⋅ 𝐹𝑎𝑖𝑟 

                                                 +25% ⋅ 𝑃𝑜𝑜𝑟 + 0 ⋅ 𝑉𝑒𝑟𝑦 𝑃𝑜𝑜𝑟                                                    (6) 

The ratings for each condition category are in percentages, therefore fixed weights CCI is bounded 

between 0 and 1. Bain and Fortenbery built the weekly crop yield forecasting model by having the 

end of season 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 in the framework, and the model is specified as: 

                                        𝑌𝑖𝑒𝑙𝑑𝑖 = 𝛼0 + 𝛼1 ∙ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛽1 ⋅ 𝐶𝐶𝐼𝑛𝑑𝑒𝑥𝑖 + 𝑒𝑖                              (7) 

where 𝑌𝑖𝑒𝑙𝑑𝑖 is the final yields in year i, 𝑇𝑟𝑒𝑛𝑑𝑖 is the time index for year i, 𝐶𝐶𝐼𝑛𝑑𝑒𝑥𝑖 is the end 

of season 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 value for year i. For example, the yield forecasts for week 23, 2000 for corn 

are estimated with the following steps. First, we transform crop conditions of the end of growing 

season to the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 from 1986 through 1999. Second, we run the model with 

annual final yield estimates as the response variable and year index and the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 

as explanatory variables. Third, once we obtain the crop condition ratings for week 23, 2000, we 

transform them to the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 and enter them in the model with updated year index 

for 2000 to have the yield forecasts.  

3.4. Model Comparison and Forecast Evaluation 

There are two sets of comparisons conducted by our study. First, we compare all five yield 

forecasting models with naïve trend yield model to evaluate the value of crop condition index as a 

yield indicator. Second, we set BM model as a benchmark to compare it with other four simpler 

yield forecasting models. The comparisons are conducted both at state level and national level, by 



focusing on the forecast errors for week 29 of mid-July, over the out-of-sample period from 2000 

through 2022, and the root mean squared percentage error (RMSPE) of each yield forecasting 

model over the out-of-sample period throughout the entire growing season.  

We use the absolute value of the difference between final yield estimates and the yield 

forecasts for week 29 to measure the forecast error in week 29. The weekly forecast errors 𝑒𝑤,𝑡
𝑖  for 

model 𝑖 are defined as the percentage difference between the USDA final yields and this model’s 

yield forecasts: 

                                                               𝑒𝑤,𝑡
𝑖 = 100 ∙

(𝑦𝑡−𝑦𝑤,𝑡
�̂� )

𝑦𝑡
                                                      (8) 

where 𝑦𝑡 is the final USDA yield estimates and 𝑦𝑤,𝑡
�̂�  is the predicted yields in year 𝑡 for week 𝑤 

produced by model 𝑖. We use the root mean squared percentage error (RMSPE) to measure each 

model’s predicative accuracy. RMSPE is defined as 

                                                 𝑅𝑀𝑆𝑃𝐸𝑤,𝑡
𝑖 = √1

𝑛
∑(

(𝑦𝑡−𝑦𝑤,𝑡
�̂� )

𝑦𝑡
)

2

                                                    (9) 

where 𝑛  is the number of observations for each week over the out-of-sample period. One 

advantage of RMSPE error is that it transforms the error to the positive percentage value, so it 

avoids offsetting positive and negative errors, and we only need to consider one direction of the 

error. The other advantage is that RMSPE makes the errors comparable for corn and soybean.  

4.1 Naïve trend yield model  

One of the key factors that determines crop yields is the technology development over the years. 

Crops tend to increase their yields year by year, which is known as the “trend yield” (Irwin, Good, 

and Tannura, 2009). Naïve trend yield model serves as the base model that we use to compare with 

five yield forecasting models. This is because naïve trend yield model only includes time to 



account for the variations in yields over time, and yet yield forecasting models include time and 

crop condition ratings to explain the development of yields. The comparisons provide clear 

evaluations of whether additional crop condition ratings contain valuable yield information as 

naïve model only includes year index to account for the variations in national yields. Naïve trend 

yield model is specified as below: 

                                         𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + 𝛽1,𝑡𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 + 𝜖𝑡,                                               (10) 

where 𝑌𝑖𝑒𝑙𝑑𝑡 is the national final yield estimates in year 𝑡, 𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 is the corresponding 

year index running from 1 to 35 for the year from 1986 to 2022.  

The yield forecasts provided by naïve trend yield model also follow the recursively out-of-

sample forecasting approach. For example, when we are in year 2000, we use yields and time 

indices from 1986 to 1999 to train the model. In 2000, we can make yield predictions using the 

updated year index of 15 for all weeks during the growing season for corn and soybean. 

4.2 Comparison at state level 

Both BM model and IG State model provide the state-level yield forecasts. To compare which 

model systematically provide better yield forecasts, we compare: (i) the absolute value of yield 

forecast errors for mid-growing season, that is approximately week 29 for both corn and soybean 

over the out-of-sample period; (ii) weekly RMSPE over the out-of-sample period for each week 

during the growing season. We conduct the comparisons for two representative states given their 

geographic difference: Illinois and South Dakota.  

Figure 4 and Figure 5 present the percentage difference between forecasted yields provided 

by BM model and IG State model for week 29 over the out-of-sample period for corn and soybean, 

respectively. Figure 4 (a) and Figure 5 (a) show that in Illinois, there is no clear pattern of which 

model outperforms over time. Figure 4 (b) and Figure 5 (b) show a similar pattern in South Dakota. 



For year 2012 when crop productions are largely impacted by droughts, we observe that for 

Illinois, BM model provided more accurate yield forecasts than IG State model in the mid-growing 

season, whereas for South Dakota, it shows IG State model is more accurate.  

Figure 6 and Figure 7 present the RMSPE for each week during the growing season over 

the out-of-sample period for corn and soybean. For Illinois, Figure 6 (a) show that BM model has 

better performance since mid-July till the end of growing season for corn; Figure 7 (a) shows IG 

State model outperforms BM model from mid-July to mid-August for soybean. For South Dakota, 

Figure 6 (b) suggests BM model takes the lead from early-June to early-July, then IG State model 

provides more accurate yield forecasts from early-July till the end of growing season for corn; 

Figure 7 (b) suggests that BM model has better forecasting performance from early-June to late-

August, then Irwin and Good model takes the lead till the end of growing season for soybean.  

4.3 Comparison at national level  

All yield forecasting models been discussed in this study provide national-level yield forecasts for 

each week during the growing season over the out-of-sample period. First, we focus on the forecast 

errors for mid-growing season from 2000 – 2022. Figure 8 and Figure 9 presents the forecast error 

between national yield forecasts provided by five yield forecasting models and the final USDA 

yield estimates for corn and soybean, respectively. We also present the yield forecasts provided by 

naïve tend yield model. It suggests that from 2000 – 2022, all forecasting models provide more 

accurate yield forecasts than naïve trend yield model, which shows the value of crop condition 

ratings for yield forecasts. To compare the forecast errors of each forecasting model, we observe 

that there is no clear pattern to show which model has the superior forecasting performance.  

Table 1 summarizes the RMSPE of five forecasting models for each week during the 

growing season for corn and soybean. RMSPE of all five models for corn are bounded with a 



maximum level of 8.8% from IG National model, indicating that for week 23, the yield forecasts 

provided by IG National model are within 8.8% of the final average yields. A minimum level of 

3.4% from BF model for week 39, indicating the yield forecasts provided by Bain and Fortenbery 

model are within 3.4% of the final yields estimates. The average of RMSPE for corn is about 5% 

throughout the growing season. For soybean, the pattern is similar. RMSPE are in the range of 

(3.6%, 8.0%), and the overall average RMSPE across the whole forecasting path is about 6%.  

Figure 10 shows for corn, all five forecasting models provide more accurate yield forecasts 

than naïve trend yield model since week 24, about early-June till the end of growing season. Figure 

11 shows for soybean, all five forecasting models show the forecasting advantage since early-

August. Both plots present the pattern of the yield forecasts provided by BM model and its four 

competitors: near the end of growing season, all models provide the most accurate yield forecasts; 

and later in the growing season, there is no forecasting improvements. This pattern indicates by 

the mid-August, yield forecasting models apply the crop condition ratings reach the limits as 

human observations cannot fully capture the true underlying information in the fields. 

4.4 Single-horizon yield forecasts comparison 

For each week we conduct a pairwise comparison between BM model and its four competitors. 

We apply the modified Diebold-Mariano (MDM) test for each week to test if BM model provides 

more accurate yield forecasts at single horizon throughout the growing season. The MDM test is 

developed by Harvey, Leybourne, and Newbold (1997) with the advantage that the MDM test 

works well for small samples; and with the increase in forecasting horizons, the over-sized MDM 

test results remain stable. The MDM test is applied on two models’ out-of-sample forecast errors. 

For each week, there are 21 observations as the out-of-sample period covers years from 2000 – 

2022.  



The null hypothesis is that two models have the same predictive accuracy, and it lies upon 

the loss function between two models’ errors. To be more specific, we test if the difference in 

RMSPE between BM model and other of its competitors is significant. Here we assume the loss 

function to be quadratic, and when we fail to reject the null hypothesis, we have: 

                                                     𝑑𝑤,𝑡 = (𝑒𝑤,𝑡
2 )

2
− (𝑒𝑤,𝑡

1 )
2
                                                       (11) 

                                                            𝐸(𝑑𝑤,𝑡) = 0                                                                    (12) 

where 𝑒𝑤,𝑡
1  represents the yield errors from BM model, and 𝑒𝑤,𝑡

2  represents the yield errors from 

one of its competing models.  

For the ℎ-step ahead yield forecasts, the statistic of MDM is defined as: 

                              𝑀𝐷𝑀 = [
𝑛+1−2ℎ+𝑛−1ℎ(ℎ−1)

𝑛
]

1

2
∙ �̅�𝑤 ∙ [𝑉(�̅�𝑤)]

−
1

2                                           (13) 

                                         𝑉(�̅�𝑤) = [𝑛−1(𝛾0 + 2∑ 𝛾𝑠
ℎ−1
𝑠=1 )]                                                       (14) 

where �̅�𝑤 is the sample mean of 𝑑𝑤,𝑡, 𝑤 is the forecast week and 𝑤 = 1,2,3,… ,17 for corn and 

𝑤 = 1,2,3,… ,15  for soybean, 𝛾0 = 𝑛−1 ∑ (𝑑𝑤,𝑡 − �̅�𝑤)2𝑛
𝑡=1  as the variance of 𝑑𝑤,𝑡 , 𝛾𝑠 =

𝑛−1 ∑ (𝑑𝑤,𝑡 − �̅�𝑤)(𝑑𝑤,𝑡−𝑠 − �̅�𝑤), 𝑠 = 1,2,3,… , ℎ − 1𝑛
𝑡=𝑠+1 , as the 𝑠th auto-covariance of 𝑑𝑤,𝑡 . 

As each week we make yield predictions for a year ahead, we have one-step ahead forecasts where 

ℎ = 1. Therefore, the MDM statistics for each forecast week is: 

                         𝑀𝐷𝑀𝑤 = [(𝑛 − 1)]
1

2 ∙ �̅�𝑤 ∙ [𝑛−1(∑ (𝑑𝑡,𝑤 − �̅�𝑤
𝑛
𝑡=1 )

2
)]

−
1

2
                                 (15) 

The MDM test statistics for corn and soybean are summarized in Table 3 and Table 4. The 

null hypothesis is that: each week throughout the out-of-sample forecasting period, the forecasting 

performance of BM model and one of its competing models have the same predictability. Test 

statistics show that for corn, out of 68 cases of pair-wise yield forecast comparisons, from week 

23 to week 39, all test statistics are insignificant. These results suggest that we fail to reject the 



null hypothesis that BM model does not have better forecasting performance than other less-

computation demanding models. For soybean, out of 60 cases of pair-wise yield forecast 

comparisons, covering forecast weeks from week 25 – week 39, there is no significant cases. These 

results suggest for soybeans, BM model does not outperform its competitors for each week 

throughout the growing season. 

4.5 Best model selected by the Model Confidence Set (MCS) test 

Each week, all five yield forecasting models produce weekly yield forecasts for corn and soybean. 

In the previous section, we apply the MDM test to conduct a pairwise yield performance test 

between BM model and one of its competing models. To extend the pairwise comparisons, Model 

Confidence Set (MCS) test allows model selection for all yield forecasting models (Hansen, 

Lunde, and Nason, 2011). For a given significance level 𝛼, MCS test selects the model with best 

forecasting accuracy from a set of models.  

Colino et al. (2012) show that equal-weighted composites provide more accurate forecasts 

than individual outlook programs for hog prices. Following their approaches, we build the Equal 

Weighted Model that produce composite forecasts which are the arithmetic average of the five 

individual yield forecasts. We include the composite forecasts in the set of yield forecasting models 

and we apply the MCS test to test whether composite forecasts outperform individual forecasts.  

As MCS is built on the iterative procedures where each step, it eliminates the worst 

performing model from the set of six models (ℳ0) until the last model survives from the tests in 

all previous five steps. Each step, to select which model should be eliminated, it is based on the t-

statistics proposed by Hansen, Lunde, and Nason (2011): 

                                                  𝑡𝑖 . =
𝑑𝑖.̅̅̅̅

√𝑣𝑎�̂�(𝑑𝑖.̅̅̅̅ )
, for 𝑖, 𝑗 ∈ ℳ0                                                        (16) 



where 𝑑𝑖.̅̅̅̅ ≡ 𝑚−1 ∑ 𝑑𝑖𝑗̅̅ ̅̅
𝑗∈ℳ0

, 𝑑𝑖𝑗̅̅ ̅̅ = 𝑛−1 ∑ 𝑑𝑖𝑗,𝑡
𝑛
𝑡=1 , 𝑑𝑖𝑗,𝑡 = 𝐿𝑖,𝑡 − 𝐿𝑗,𝑡 , 𝐿(∙)  is the squared error 

function. Corresponding p-values are collected from the bootstrap of the test statistics. The best 

model selected by MCS has p-value equals to 1. When more than one model has p-value equals to 

1, we use the equivalence test: 𝑇𝐷 ≡ ∑ (𝑡𝑖 . )
2

𝑖∈ℳ0
 to test if the last survived model outperforms its 

competitors.  

Our study reports the last model selected by MCS test based on the p-values produced by 

2,000 bootstrap replicates for each week. We first show MCS test results for the set of models only 

consists of five individual yield forecasting models; next we show the MCS test results for the set 

of models with Equal Weight Model and five individual yield forecasting models. The significance 

level for MCS test is 10%. We also report the p-values for the equivalence test. When p-values 

greater than 0.1, it suggests the best selected model fails to have superior predictability than its 

competitors.  

Weekly MCS test results for corn and soybean are reported in Table 5 and Table 6. In Table 

5, we report the best model that survives four steps of model selections for each week. The set of 

models consist of five individual yield forecasting models. For both corn and soybean, early in the 

growing season, the best model is IG National with Bias Adjustment, and by the end of growing 

season, BM model and BF model provide the most accurate yield predictions. In Table 6, we report 

the MCS test for the set of models including Equal Weighted model and five individual yield 

forecasting models. For both crops throughout the growing stages, the best model selected is Equal 

Weighted model that provide equal-weighted composite forecasts of five individual yield 

forecasts, except for corn in the week of August 19, the selected best model is BF model. For Table 

5 and Table 6, each week, the p-value of each step’s model elimination is greater than the 

significance level of 0.1, and there is more than one model has p-value equals to 1. The equivalence 



test p-values are also reported in Table 5 and Table 6. They fail to reject the null hypothesis of 

whether these models have equal predictive ability. These findings suggest the selected best 

models indeed provide more accurate yield forecasts, however, they to significantly outperform 

their competitors.  

4.6 Weekly forecasting errors correlation 

During the growing season, crop conditions ratings are published each week. In the estimation 

process, the data under preparation are compared with data reported in previous week and in 

surrounding counties. This procedure makes the weekly condition ratings correlated in a year. We 

want to test if such dependence is available in the forecasting error between the USDA final yields 

and the yield forecasts produced by one of our selected yield forecasting models. We conduct the 

correlation test for corn and soybean forecasting errors using BM model as we assume that for 

other models because the out-of-sample yield forecasts are also produced recursively, they should 

follow a similar pattern. We run multiple OLS models between the first week and the weeks ahead. 

Each OLS estimation, the first week is treated as the independent variable, and each week ahead 

is the dependent variable.  

Correlation test results for corn and soybean are summarized in Table 2. We use 

Heteroskedasticity and Autocorrelation Corrected (HAC) standard errors to produce t-statistic and 

p-value. Test results show that the first week are correlated significantly to all weeks in the growing 

season at the 5% significant level. As all competing yield forecasting models have similar patterns 

of yield forecast errors over the growing season, we can expect this correlation embedded in these 

forecasting models as well.  

4.7 Multi-horizon yield forecasts comparison  



One limitation of the MDM test is that it only provides comparison test results for two competing 

models at each horizon 𝑤 . It is very common to find that at some horizons the first model 

outperforms the second, and at some other horizons, such situation reverses. Sometime, only using 

the single horizon forecast comparison test like the MDM test is likely to conclude contradictory 

results. For two competing models that cover multi-horizons, it is necessary to perform an omnibus 

test on all the forecasting horizons. When we argue which model has better forecasting 

performance, the omnibus test adds more conclusive evidence. Quaedvlieg (2021) introduced the 

multi-horizon superior predictive ability (SPA) tests that enable the comparison of forecasts of 

different models jointly, combining these models’ predictability across all horizons. The author 

proposed two tests, the first one is the uniform SPA test that tests if a model has superior 

forecasting performance at each individual horizon; the second one is the average SPA test that 

tests if a model has superior forecasting performance considering the whole forecasting path. For 

our study, we follow Quaedvlieg (2021) average SPA test as we can see in Figure 10 and Figure 

11 that there are some cross-over points between BM model and its competing models for corn 

and soybean, suggesting for some weeks, BM model has lower forecast errors while in some other 

weeks, its competing models achieve lower forecast errors. Therefore, it is more appropriate to 

apply the multi-horizon average Super Predictive Ability (aSPA) test (2021) pair-wisely between 

BM model and the other four forecasting models. This test extends the MDM test and compare 

two models’ yield forecasts across the whole growing season. 

Each year USDA final yields are denoted as 𝑦𝑡, and the weekly yield forecasts produced 

by model 𝑖 is denoted as 𝑦𝑡
�̂�. In multi-horizon test framework, 𝑦𝑡

�̂� is a 17-dimension vector, 𝑦𝑡
�̂� =

[𝑦1,𝑡
�̂� , 𝑦2,𝑡

�̂� , … 𝑦ℎ,𝑡
�̂� , … , 𝑦17,𝑡

�̂� ], where ℎ indicate the week that produces the yield forecasts; 𝑖 represents 

different choice of forecasting models; 𝑡 is the year when the fixed-event forecasts happen. We 



define the loss function as 𝐿𝑡
𝑖 = 𝐿(𝑦𝑡, 𝑦𝑡

�̂�), and it projects the final yield estimates onto a 17-

dimension space. The loss function is defined in a quadratic form, that is the square of the 

percentage difference between the final yield estimates and each week’s yield forecasts provided 

by model 𝑖. Here we use notation “1” to stand for BM model, and “2” for its competing model. 

Then we define the loss differential for the two competing yield forecasts as 𝑑𝑡 = 𝐿𝑡
2 − 𝐿𝑡

1. 𝐷 is 

the loss differentials matrix and its dimensions are 21 ×  17. 𝐷 = [𝑑1
𝑇 , … , 𝑑𝑡

𝑇 , … , 𝑑21
𝑇 ]𝑇, where  

𝑑𝑡 = [𝑑𝑡
1, … , 𝑑𝑡

ℎ , … , 𝑑𝑡
17]. Each entry of the matrix 𝐷 is denoted as 𝑑𝑡

ℎ, and 𝐷 is specified as: 

                                           𝐷 =

[
 
 
 
 
𝑑1

1 … 𝑑1
ℎ … 𝑑1

17

⋮ ⋱ ⋮ ⋱ ⋮
𝑑𝑡

1 … 𝑑𝑡
ℎ … 𝑑𝑡

17

⋮ ⋱ ⋮ ⋱ ⋮
𝑑21

1 … 𝑑21
ℎ … 𝑑21

17]
 
 
 
 

21×17

                                                (17) 

We use the mean loss differentials, 𝜇𝑎𝑆𝑃𝐴 = ∑ 𝑤ℎ𝜇17
ℎ=1 ℎ

, to compare two models’ overall 

predictability. 𝜇𝑎𝑆𝑃𝐴 can be taken as the weighted sum of each week’s average differentials, where 

𝑤ℎ  is the weights for each forecast week; 𝜇ℎ = lim
𝑇→∞

1

𝑇
∑ 𝑑𝑡

ℎ𝑇
𝑡=1  is the mean of each week’s loss 

differentials and we use �̅�ℎ = 
1

21
∑ 𝑑𝑡

ℎ̂21
𝑡=1  to estimate 𝜇ℎ. The null hypothesis of the aSPA test is 

𝜇𝑎𝑆𝑃𝐴 ≤ 0 , meaning considering all horizons, on average, BM model fails to provide better 

performance than its competitors. The studentized statistic for aSPA test is: 

                                                            𝑡𝑎𝑆𝑃𝐴 =
√𝑇 ∑ 𝑤ℎ⋅�̅�ℎ

17
ℎ=1

�̂�
                                                            (18) 

where 𝜍̂ = √𝑤′Ω̂𝑤 ; 𝑤 = [𝑤1, … , 𝑤ℎ , … , 𝑤17]
𝑇 is the 17-dimentional weight vector. Ω  is the 

variance-covariance matrix of matrix 𝐷 . We denote 𝐷 = [𝐷𝑡
1, … , 𝐷𝑡

ℎ, … , 𝐷𝑡
17] , where 𝐷𝑡

ℎ =

[𝑑1
ℎ, … , 𝑑21

ℎ ]𝑇. The variance-covariance matrix Ω of matrix D is defined as: 

                                       Ω = [
𝑣𝑎𝑟(𝐷𝑡

1) … 𝑐𝑜𝑣(𝐷𝑡
1, 𝐷𝑡

17)
⋮ ⋮ ⋮

𝑐𝑜𝑣(𝐷𝑡
1, 𝐷𝑡

17) … 𝑣𝑎𝑟(𝐷𝑡
17)

]

17×17

,                                   (19) 



where 𝑣𝑎𝑟(𝐷𝑡
1) =

1

𝑇
(𝐷𝑡

1)𝑇(𝐷𝑡
1) =

1

𝑇
∑ (𝑑𝑡

1)221
𝑡=1 ; 𝑐𝑜𝑣(𝐷𝑡

1, 𝐷𝑡
17) =

1

𝑇
(𝐷𝑡

1)𝑇(𝐷𝑡
17) =

1

𝑇
∑ 𝑑𝑡

1 ∙21
𝑡=1

𝑑𝑡
17. For a given year, from our correlation test results, we found each week’s differentials are 

highly correlated. Instead of directly estimating the full variance-covariance matrix Ω, we use the 

Newey-West HAC estimator to find its estimator, Ω̂. The choices of weights are flexible. We 

follow the examples proposed by Quaedvlieg (2021): first, we select the equal weight where 𝑤ℎ =

1

17
 for each week; second, we use “efficient” weights to minimize 𝜍 as the yield forecasts during 

the growing season are based on accumulated crop growing survey information. We assign small 

weights to early forecasts where variance is high, and we assign large weights to near end-of-

season forecasts where variance is low. Therefore, the inverse-variance weights are defined as 

𝑤ℎ =
1

𝜎ℎ
2(∑ 𝜎𝑖

217
𝑖=1 )

 and they satisfy the condition that the sum of weights is equal to 1. To obtain the 

critical values and p-values, we use the moving block bootstrap (MBB) technique to draw the 

distribution. We focus on the significance level at 5%, and the significance level is the 

corresponding percentile of the bootstrap distribution.  

From the single-horizon MDM test, throughout the growing season, for both corn and 

soybean, the test results produce mixed evidence. To test if BM model has better forecasting 

performance throughout the whole growing season, we perform multi-horizon average SPA test. 

First, we assign equal weights to each horizon for the loss differentials. The null hypothesis of the 

average SPA test is that considering all horizons, on average, simple yield forecasting model has 

better performance than BM model. Test results are summarized in Table 7. The multi-horizon 

average SPA test p-values are all greater than 5%, suggesting BM model fails to have significantly 

better predictability than its four competitors. Second, we conduct the average SPA test with 

varying weights for each week of the growing season. Test results are summarized in Table 8. The 

findings with average SPA tests are consistent with what we found with the single horizon MDM 



test: BM model fails to systematically outperforms its competing models during the growing 

season for corn and soybean. A plausible argument for this finding is that BM model only controls 

for the time and spatial variations in the state-level crop condition ratings, so the transformed 

weekly CCI do not contain more determinate factors to account for the variations in yields than 

the other yield forecasting models which apply simple approaches to transform the ordinal 

condition ratings.  

5. Conclusions  

Crop production forecasts have been an important indicator for price changes in agricultural 

commodity markets. A small group of studies use the crop conditions data to build the yield 

forecasting models. Condition ratings are the products of human sensors, and they provide 

consistent subjective assessment about crops conditions that highly correlated with crops’ yields.  

This study examined the forecasting accuracy of a batch of yield forecasting models that 

directly transform the ordinal crop condition ratings to the numeric condition index along with a 

recently developed model introduced by Begueria and Maneta in 2020 that applies the cumulative 

link mixed model to transform the condition ratings to the continuous condition index. We conduct 

the out-of-sample yield forecasts recursively for corn and soybean from 2000 through 2022 for all 

models. We compared each model’s yield forecasts with USDA final yield estimates and we used 

RMSPE to measure each model’s forecasting accuracy. We found all models provide a pattern of 

the forecasting accuracy: in early weeks of the growing season, RMSPE are relatively higher than 

that in the final weeks. This pattern is reasonable as we move toward the end of season, crops are 

about to mature, so their conditions connect to yields more closely. The average RMSPE level for 

all models throughout the growing season is about 5% for corn and 6% for soybean. Our findings 

suggest this group of models that use crop conditions data provide accurate yield forecasts.  



This study compared the forecasting performance of BM model with its four competing 

yield forecasting models that have already been widely applied by industry practitioners. One 

disadvantage of BM model is that it is more complex and computational demanding. Our study 

evaluates if the BM model provides significantly superior yield forecasts than its competitors so 

its disadvantage can be compensated. We use the modified Diebold Mariano test for the single-

horizon pair-wise forecasts comparisons. Test results suggest for both corn and soybean, BM 

model fails to outperform its competitors. With Model Confidence Set test, we find among 

individual yield forecasting models, in early weeks IG with Bias Adjustment is usually the best 

model, and in final weeks, BM model and BF model are selected as the best models. With 

composite forecasts in the set of models, Equal Weighted model is selected as the best model. 

However, all best models fail to significantly outperform their competitors. Furthermore, we 

conduct the multi-horizon average Superior Predictive Ability test to test whether averaging out 

the forecasting performance over the growing season, BM model has superior predictability. Test 

results show that for both corn and soybean, BM model fails to provide significantly more accurate 

yield forecasts than its competing yield forecasting models.  

  



6. Tables and Figures 

Table 1: The RMSPE of weekly yield forecasting models for corn and soybean at national level 

over 2000 – 2022 

 

Date BM Model 
IG State 

Model 

IG National 

Model 

IG National with 

Bias Adjustment Model 
BF Model 

Panel A: Corn  

June 03 7.6 8.3 8.8 7.6 8.5 

June 10 7.4 7.8 8.4 7.2 8.1 

June 17 6.9 7.3 7.7 6.4 7.5 

June 24 6.1 6.5 6.9 5.6 6.5 

July 01 5.7 5.6 6.1 5.1 5.6 

July 08 5.0 4.8 5.1 4.5 4.6 

July 15 4.4 4.3 4.5 4.3 4.1 

July 22 4.2 4.0 4.4 4.3 3.9 

July 29 4.2 4.0 4.2 4.2 3.8 

August 05 4.2 3.9 4.2 4.2 3.9 

August 12 4.1 3.9 4.1 4.1 3.8 

August 19 4.0 3.8 3.9 3.9 3.6 

August 26 4.2 3.9 4.1 4.1 3.9 

September 02 4.1 4.1 4.2 4.2 4.0 

September 09 4.0 4.1 4.2 4.2 3.9 

September 16 3.8 3.9 4.0 4.0 3.7 

September 23 3.7 3.8 3.8 3.8 3.4 

Panel B: Soybean 

June 17 6.3 8.0 7.2 6.4 8.0 

June 24 6.3 7.9 7.2 6.5 7.6 

July 01 6.5 7.9 7.1 6.6 7.5 

July 08 6.6 8.0 7.0 6.7 7.5 

July 15 6.8 7.9 7.0 6.7 7.4 

July 22 6.7 7.8 6.7 6.4 7.3 

July 29 6.5 7.7 6.5 6.5 7.3 

August 05 6.3 7.4 6.5 6.5 7.1 

August 12 5.7 6.5 5.8 5.8 7.0 

August 19 4.8 5.5 4.9 4.9 6.8 

August 26 4.2 5.1 4.5 4.5 6.0 

September 02 4.1 5.0 4.3 4.3 5.1 

September 09 4.0 5.1 4.2 4.2 4.5 

September 16 3.8 5.0 4.0 4.0 4.2 

September 23 3.6 4.9 3.8 3.8 4.2 

Notes: For each week, there are 21 observations in the out-of-sample period from 2000 – 2021. The RMSPE 

measures the average forecast errors over the out-of-sample period, and it is measured in percentage (%). BM model 

is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG National with Bias Adjustment 

Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and Fortenbery (2017).  

 

 

 

 

 

 

 

 



Table 2: Correlation test results for BM model for corn and soybean over 2000 – 2022 

 
Panel A: Corn, independent variable: forecasting error 

week 23 (June 03) 

Panel B: Soybean, independent variable: error in week 

25 (June 17)  

Dependent 

Week  

Coefficient t-Statistic p-Value Dependent 

Week  

Coefficient t-Statistic p-Value 

Date Date 

June 10 0.970 68.894 0.000 
    

June 17 0.905 49.597 0.000 
    

June 24 0.798 22.151 0.000 June 24 1.00 50.90 0.00 

July 01 0.715 15.020 0.000 July 01 1.00 29.51 0.00 

July 08 0.588 10.474 0.000 July 08 1.00 19.59 0.00 

July 15 0.455 7.419 0.000 July 15 0.97 14.49 0.00 

July 22 0.396 5.732 0.000 July 22 0.90 11.55 0.00 

July 29 0.396 6.112 0.000 July 29 0.89 13.50 0.00 

August 05 0.389 6.825 0.000 August 05 0.85 13.06 0.00 

August 12 0.408 7.546 0.000 August 12 0.78 13.85 0.00 

August 19 0.387 6.336 0.000 August 19 0.63 10.30 0.00 

August 26 0.374 6.270 0.000 August 26 0.55 9.27 0.00 

September 02 0.374 6.925 0.000 September 02 0.53 9.15 0.00 

September 09 0.357 7.601 0.000 September 09 0.49 8.31 0.00 

September 16 0.328 7.223 0.000 September 16 0.48 8.91 0.00 

September 23 0.322 6.892 0.000 September 23 0.46 9.71 0.00 

Notes: Correlation test results with the OLS regression where the independent variable is the forecast error in the 

first week; and the dependent variable is each one of the other weeks in the growing season. Regression function is 

specified as: 𝑒1+𝑖 = 𝛼𝑖 + 𝛽𝑖𝑒1 + 𝜎𝑖 , 𝑖 = 1, … , 16 for corn and 𝑖 = 1, … , 14 for soybean. HAC estimation is used to 

correct for autocorrelation and heteroskedasticity. Coefficients in bold indicate they are significantly at the level that 

is no greater than 5%. BM model is proposed by Begueria and Maneta (2020).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: The Modified Diebold Mariano (MDM) test statistics between the BM 

model and other yield forecasting models for Corn 

 

Date 
BM vs IG 

State 
BM vs IG National 

BM vs IG National 

with Bias Adjustment 
BM vs BF 

June 03 0.387 0.817 -0.409 0.579 

 (0.702) (0.423) (0.686) (0.568) 

June 10 0.074 0.561 -0.831 0.341 

 (0.942) (0.580) (0.415) (0.737) 

June 17 0.008 0.379 -1.360 0.173 

 (0.993) (0.709) (0.188) (0.864) 

June 24 0.027 0.424 -1.391 0.131 

 (0.978) (0.676) (0.178) (0.897) 

July 01 -0.457 0.059 -1.449 -0.427 

 (0.652) (0.954) (0.162) (0.674) 

July 08 -0.576 -0.090 -1.396 -0.692 

 (0.570) (0.929) (0.177) (0.496) 

July 15 -0.621 0.025 -0.640 -0.761 

 (0.541) (0.981) (0.529) (0.455) 

July 22 -0.703 0.024 -0.103 -0.793 

 (0.489) (0.981) (0.919) (0.436) 

July 29 -1.003 -0.278 -0.278 -1.053 

 (0.327) (0.784) (0.784) (0.304) 

August 05 -1.103 -0.300 -0.300 -0.660 

 (0.282) (0.767) (0.767) (0.516) 
August 12 -1.559 -0.406 -0.406 -0.826 

 (0.133) (0.689) (0.689) (0.418) 

August 19 -1.375 -0.840 -0.840 -1.008 

 (0.183) (0.410) (0.410) (0.324) 

August 26 -1.140 -0.729 -0.729 -0.391 

 (0.267) (0.474) (0.474) (0.700) 

September 02 -0.138 0.363 0.363 0.093 

 (0.891) (0.720) (0.720) (0.927) 

September 09 0.140 0.480 0.480 0.026 

 (0.890) (0.636) (0.636) (0.980) 

September 16 0.482 0.789 0.789 -0.087 

 (0.634) (0.438) (0.438) (0.932) 

September 23 0.229 0.239 0.239 -0.847 

 (0.821) (0.813) (0.813) (0.406) 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the MDM test. The null 

hypothesis is that for each week, each of the four competing forecasting models have the same 

predictability as the BM model. BM model is proposed by Begueria and Maneta (2020), IG State 

model, IG National model, IG National with Bias Adjustment Model are proposed by Irwin and 

Good (2017a), and BF model is proposed by Bain and Fortenbery (2017). 

 

 

 

 

 

 

 

 



Table 4: The Modified Diebold Mariano (MDM) test statistics between the BM 

model and other yield forecasting models for soybean 

 

Date 
BM vs IG 

State 
BM vs IG National 

BM vs IG National 

with Bias Adjustment 
BM vs BF 

June 17 0.808 0.444 -0.124 0.604 

 (0.428) (0.662) (0.902) (0.552) 

June 24 0.795 0.412 -0.122 0.630 

 (0.435) (0.685) (0.904) (0.535) 

July 01 0.724 0.241 -0.075 0.451 

 (0.477) (0.812) (0.941) (0.657) 

July 08 0.811 0.135 -0.190 0.396 

 (0.426) (0.894) (0.851) (0.696) 

July 15 0.886 0.111 -0.351 0.690 

 (0.385) (0.912) (0.729) (0.497) 

July 22 0.748 -0.371 -2.083 0.452 

 (0.462) (0.714) (0.049) (0.656) 

July 29 0.801 -0.339 -0.339 0.495 

 (0.432) (0.738) (0.738) (0.625) 

August 05 0.785 -0.065 -0.065 0.558 

 (0.441) (0.949) (0.949) (0.582) 

August 12 0.680 -0.112 -0.112 0.563 

 (0.504) (0.912) (0.912) (0.579) 

August 19 0.629 0.469 0.469 1.198 

 (0.536) (0.644) (0.644) (0.244) 
August 26 0.630 0.942 0.942 1.505 

 (0.535) (0.356) (0.356) (0.147) 

September 02 0.665 1.238 1.238 0.877 

 (0.513) (0.229) (0.229) (0.390) 

September 09 0.715 1.251 1.251 1.224 

 (0.482) (0.224) (0.224) (0.234) 

September 16 0.759 1.266 1.266 0.559 

 (0.456) (0.219) (0.219) (0.582) 

September 23 0.718 1.221 1.221 0.813 

  (0.480) (0.235) (0.235) (0.425) 

Notes: *, **, *** is the significant level at 10%, 5%, 1% respectively. This table presents the t-

statistics and p-values (in parenthesis) for the MDM test. The null hypothesis is that for each 

week, each of the four competing forecasting models have the same predictability as the BM 

model. BM model is proposed by Begueria and Maneta (2020), IG State model, IG National 

model, IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and 

BF model is proposed by Bain and Fortenbery (2017). 



Table 5: Weekly best model selected by MCS test for corn and soybean from 2000 – 2022 
 

Panel A: Corn      Panel B: Soybean     

Date Best Model with MCS Test MCS  

p-values 

Date Best Model with MCS Test MCS 

p-values 

June 03 IG National with Bias Adjustment 0.175 
   

June 10 IG National with Bias Adjustment 0.261 
   

June 17 IG National with Bias Adjustment 0.284 June 17 IG National with Bias Adjustment 0.338 

June 24 IG National with Bias Adjustment 0.298 June 24 IG National with Bias Adjustment 0.470 

July 01 IG National with Bias Adjustment 0.499 July 01 IG National with Bias Adjustment 0.486 

July 08 IG National with Bias Adjustment 0.638 July 08 IG National with Bias Adjustment 0.377 

July 15 BF 0.664 July 15 IG National 0.441 

July 22 IG State 0.260 July 22 IG National 0.474 

July 29 BF 0.590 July 29 IG National 0.501 

August 05 IG State 0.585 August 05 IG National 0.516 

August 12 IG State 0.221 August 12 IG National 0.623 

August 19 BF 0.752 August 19 BM 0.653 

August 26 IG State 0.236 August 26 BM 0.646 

September 02 IG State 0.917 September 02 BM 0.562 

September 09 BM 0.883 September 09 BM 0.537 

September 16 BM 0.696 September 16 BM 0.516 

September 23 BF 0.758 September 23 BM 0.504 

Notes: MCS p-values are all greater than the significance level of 0.1, suggesting the selected best performing model fails to significantly outperform other 

individual yield forecasting models. The best model selected by MCS test is based on the significance level of 0.1, p-values are produced with 2000 bootstrap 

replicates for the test statistics.  
 

 

 

 

 

 

 

 

 



Table 6: Weekly best model selected by MCS test for corn and soybean from 2000 – 2022 
 

Panel A: Corn      Panel B: Soybean     

Date Best Model with MCS Test  MCS 

p-values  

Date Best Model with MCS Test MCS 

p-values 

June 03 Equal Weighted model 0.112 
   

June 10 Equal Weighted model 0.209 
   

June 17 Equal Weighted model 0.200 June 17 Equal Weighted model 0.381 

June 24 Equal Weighted model 0.220 June 24 Equal Weighted model 0.574 

July 01 Equal Weighted model 0.421 July 01 Equal Weighted model 0.538 

July 08 Equal Weighted model 0.580 July 08 Equal Weighted model 0.461 

July 15 Equal Weighted model 0.694 July 15 Equal Weighted model 0.521 

July 22 Equal Weighted model 0.174 July 22 Equal Weighted model 0.556 

July 29 Equal Weighted model 0.603 July 29 IG National 0.503 

August 05 Equal Weighted model 0.611 August 05 IG National 0.606 

August 12 Equal Weighted model 0.266 August 12 Equal Weighted model 0.642 

August 19 BF 0.813 August 19 Equal Weighted model 0.675 

August 26 Equal Weighted model 0.200 August 26 Equal Weighted model 0.648 

September 02 Equal Weighted model 0.908 September 02 Equal Weighted model 0.597 

September 09 Equal Weighted model 0.877 September 09 Equal Weighted model 0.554 

September 16 Equal Weighted model 0.764 September 16 Equal Weighted model 0.504 

September 23 Equal Weighted model 0.796 September 23 Equal Weighted model 0.535 

Notes: Equal Weighted model produce yield forecast composites of five yield forecasting models. MCS p-values are all greater than the significance level of 0.1, 

suggesting Equal Weighted model fails to significantly outperform individual yield forecasting models. The best model selected by MCS test is based on the 

significance level of 0.1, p-values are produced with 2000 bootstrap replicates for the test statistics.  
 
 
 



Table 7: The multi-horizon average superior predictive ability (aSPA) test between  

BM model and other yield forecasting models for corn and soybean with fixed weights 

 

Crop BM vs IG State 
BM vs IG 

National 

BM vs IG National with 

Bias Adjustment 
BM vs BF 

corn -0.194 0.278 -0.724 -0.224 
 (0.526) (0.449) (0.617) (0.545) 

soybean 0.886 0.341 -0.0198 0.713 
 (0.199) (0.419) (0.524) (0.354) 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon 

aSPA test. The null hypothesis is that considering all horizons, on average, the competing yield 

forecasting model has better performance than BM model. BM model is proposed by Begueria 

and Maneta (2020), IG State model, IG National model, IG National with Bias Adjustment 

Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and 

Fortenbery (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8: The multi-horizon average superior predictive ability (aSPA) test between  

BM model and other yield forecasting models for corn and soybean with varying weights  

 

Crop BM vs IG State 
BM vs IG 

National 

BM vs IG National with 

Bias Adjustment 
BM vs BF 

corn -0.816 -0.076 -0.398 -0.913 
 (0.670) (0.525) (0.560) (0.722) 

soybean 0.843 1.565 1.088 1.262 
 (0.151) (0.270) (0.310) (0.332) 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon 

aSPA test. The null hypothesis is that considering all horizons, on average, the competing 

yield forecasting model has better performance than BM model. BM model is proposed by 

Begueria and Maneta (2020), IG State model, IG National model, IG National with Bias 

Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed by 

Bain and Fortenbery (2017). 



Figure 1: Yield forecasting cycle for corn 

 

Notes: we use corn as an example to illustrate the forecasting cycle. For soybean, the first 

prediction is in week 25 and the last prediction is in week 39.  
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Figure 2: Recursive out-of-sample yield forecasts with Begueria and Maneta model (2017) 

 

Notes: we use corn as an example to illustrate the forecasting cycle. For soybean, the first 

prediction is in week 25 and the last prediction is in week 39.  
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Figure 3: Recursive out-of-sample yield forecasts with IG State model and IG National model 

(2017a) 

 

Notes: we use corn as an example to illustrate the forecasting cycle. For soybean, the first 

prediction is in week 25 and the last prediction is in week 39.  
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                                                  (a) Illinois Corn                                                                                    (b) South Dakota Corn  

Figure 4: The forecast error (%) of BM model and IG State model for week 29 for corn, for Illinois and South Dakota, 2000 – 2022 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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                                          (a) Illinois Soybean                                                                            (b) South Dakota Soybean 

Figure 5: The forecast error (%) of BM model and IG State model for week 29 for soybean, for Illinois and South Dakota, soybean, 

2000 – 2022 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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                                                  (a) Illinois Corn                                                                                    (b) South Dakota Corn  

Figure 6: Weekly RMSPE of BM model and Irwin and Good model for Illinois and South Dakota for corn, 2000 – 2022 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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                                          (a) Illinois Soybean                                                                            (b) South Dakota Soybean 

Figure 7: Weekly RMSPE of BM model and Irwin and Good model for Illinois and South Dakota for soybean, 2000 – 2022  

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and Good (2017a).  
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Figure 8: The forecast error (%) of five yield forecasting models for week 29 for corn, 2000 – 

2022 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National 

model, IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and 

BF model is proposed by Bain and Fortenbery (2017). 
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Figure 9: The forecast error (%) of five yield forecasting models for week 29 for soybean, 2000 – 

2022 

 

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National 

model, IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and 

BF model is proposed by Bain and Fortenbery (2017). 
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Figure 10: RMSPE of five yield forecasting models at national level from 2000 – 2022 for corn 

 

Notes: we also include naïve trend yield model to illustrate the value of crop condition ratings as 

a yield indicator. BM model is proposed by Begueria and Maneta (2020), IG State model, IG 

National model, IG National with Bias Adjustment Model are proposed by Irwin and Good 

(2017a), and BF model is proposed by Bain and Fortenbery (2017). 
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Figure 11: RMSPE of five yield forecasting models at national level from 2000 – 2022 for 

soybean 

 

Notes: we also include naïve trend yield model to illustrate the value of crop condition ratings as 

a yield indicator. BM model is proposed by Begueria and Maneta (2020), IG State model, IG 

National model, IG National with Bias Adjustment Model are proposed by Irwin and Good 

(2017a), and BF model is proposed by Bain and Fortenbery (2017). 
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