
Where’s the Beef (Going to Be)? How Changing 

Risk Perceptions Could Affect the Number and 

Location of Beef Processing Plants

by

 
Julian Worley and Jeffrey Dorfman

Suggested citation format:

Worley, J. and J. Dorfman. 2024. “Where’s the Beef (Going to Be)? How 

Changing Risk Perceptions Could Affect the Number and Location of Beef 

Processing Plants.” Proceedings of the NCCC-134 Conference on Applied 

Commodity Price Analysis, Forecasting, and Market Risk Management. 

St. Louis, MO. [http://www.farmdoc.illinois.edu/nccc134].



1 

 
 
 
 
 
  
  

“Where’s the Beef (Going to Be)? How Changing Risk Perceptions Could Affect the 
Number and Location of Beef Processing Plants.” 

Julian Worley and Jeffrey Dorfman1  
  
  
  

Paper prepared for the NCCC-134 Conference on Applied Commodity Price Analysis,  
Forecasting, and Market Risk Management, 2024.  

  
  

Copyright 2024 by Julian Worley and Jeffrey Dorfman. All rights reserved. Readers may make 
verbatim copies of this document for non-commercial purposes by any means, provided that this  

copyright notice appears on all such copies.  
 

  



2 

“Where’s the Beef (Going to Be)? How Changing Risk Perceptions Could Affect the 
Number and Location of Beef Processing Plants.” 

Abstract  
This paper provides a framework to examine the potential impact of enhanced managerial 

focus upon the risk of plant shutdowns (and general production interruptions) on firms’ spatial 
capital investment decisions, illustrated with an empirical application to beef production plants. 
We consider both the geographic location of each plant and its size, thus also choosing the optimal 
number of production plants to operate. In both risk neutral and risk averse settings, we examine 
the robustness of these plant capital investment decisions to shifts in the perceived risk of plant 
shutdowns. Both national (absolute) and location-specific (relative) shifts in risk perceptions are 
tested. We find that the optimal plant configurations for beef producers of diverse sizes are all 
quite robust to shifts in shutdown risk perceptions within individual model specifications. However 
the comparisons of the risk neutral to risk averse models or absolute to relative shift models do 
show differences in optimal plant configuration. These results lead us to conclude that the spotlight 
which Covid-19 shone on plant shutdown risk is unlikely to lead to substantial changes in the 
spatial configuration of animal production in the U.S, but that climate change may. 
 
Key Words: Beef Production, Climate change, Covid-19, Investment, Risk Perceptions. 
 
INTRODUCTION 
 Many different economic decision models incorporate assumptions about how the level 
and nature of risk involved gives rise to different optimal choices. The true level and nature of 
risk, however, are extremely hard, if not impossible, to know. This led to the development of 
models of risk under uncertainty such as in Knight (1921) or Bloom (2009). These models still 
generally hinge on knowing something about where true risk levels lie for different decision 
paths rather than the perception of the true risk which can be quite different (Garicano and Rayo, 
2016). Could this distinction make any meaningful difference in decision outcomes? The 
perception of risk probability is surely heterogenous, based on a firm’s individual experiences 
and own risk preferences, and also more prone to changes whereas the true risk probability is an 
objective single value (Anwar et al., 2022). This is especially interesting when risk perceptions 
for various supply complications are shifting by significant amounts, such as from the impacts of 
an event like COVID-19 or severe weather events. A natural question to ask is: How could shifts 
in a firm’s risk perceptions impact the spatial organization of various industries, in particular the 
size, location, and number of production facilities firms choose to employ?  
 Risk perceptions can and have changed, rapidly and permanently in some cases, with new 
experiences and information (Weick, Sutcliffe, and Obstfeld. 2005). For example, in the wake of 
terrorist attacks on September 11, 2001, all air traffic in the United States was grounded. Along 
with the sudden halt of air traffic, all other transportation methods, including trucking, train, and 
shipping, were slowed to a glacial pace to allow for thorough inspection of possible threats if not 
halted all together. This affected the supply chain of auto parts making their way to automobile 
manufacturing plants all over the country (as well as a multitude of other industries), causing 
short term shutdowns of many production plants (Deutsch, 2001; Suder, Chailan, and Suder, 
2008). The result was a major shift in auto manufacturers’ perceptions about the risk of a supply 
chain disruption (Lampel, Shamsie, and Shapira, 2009). The short shutdown in transportation 
networks in 2001 led to new contract terms for suppliers to the auto industry where input-
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supplying plants now are required by the auto manufacturer to be within a specific distance of 
the final manufacturing plant to alleviate the chance of shutdown risk from transportation 
disruptions in the future. This change in the geography of automotive supply chains stemming 
from one relatively short shutdown shows the possible impact of shifts in perceptions of risk on 
firm decision making, versus changes in the actual constant unobserved risk levels of a shutdown 
event. The risk of a supply chain disruption did not change from before the disruptions 
experienced in the wake of the terrorist attacks (terrorist attacks could have been anticipated 
before 9/11), but the automobile firms’ perception of the risk that a sudden supply chain 
disruption could occur underwent a significant shift.  These sorts of shifts can occur regionally as 
well. For example, the shutdown of gas production in southeast Texas after Hurricane Harvey in 
2017 impacted gas prices all over the southeastern United States, but not in other regions of the 
United States. (Ivanova, 2017). Occurrence of similar natural disaster events, especially with the 
variation due to climate change in regard to the number, intensity, and the location of extreme 
weather, may shift relative risk perceptions of possible production locations, changing the 
optimal production decisions.     

Heterogeneity in risk perceptions also likely accounts for some of the variation in 
tolerated earnings variability (Bronin et al. 2007). For some firms, especially those with publicly 
traded stocks, consistency in cash flow is extremely important. A bad quarter can have a major 
impact on stock prices and cause concern among investors. Privately held companies can 
withstand more variable cash flows, as they do not have to demonstrate profitability to investors 
in the same way. Differing risk perceptions relative to earnings consistency could drive 
heterogeneity in observed risk aversion levels.  

Firms are updating their perception of the risks and potential losses to their businesses 
constantly. Therefore, accounting for the impact of risk perception-shifting events for firms 
making capital investment decisions should be part of a decision model, as the firm’s post-shift 
event optimal decision may not be the same as the pre-shift decision (Aghion et al., 2021). 
Including perception shift impacts, if they are meaningful, would help policymakers better 
predict policy outcomes, as well as help economists more accurately model the real-world 
decisions firms make. If the risk perceptions are shown not to have an impact on optimal plant 
configurations, the insight would still be useful to policy makers. If changes in risk perception 
have no effect on plant configuration decisions, then firms can more confidently make long-term 
capital investments and policy makers can accurately predict responses to policies. If shifts in 
risk perceptions do change optimal firm investment strategies (e.g., higher shutdown risk 
perceptions lead to a larger number of smaller, more geographically dispersed plants), then firms 
and economists might want to describe risk perceptions with a (Bayesian) prior distribution and 
find the optimal decision averaged over possible risk perceptions. Understanding the stability of 
plant investment decisions in the face of potentially changing risk perceptions is especially 
important for smaller communities where a production facility may be a large, if not the largest, 
employer in the area. This is most frequently the case in rural areas where most food processing 
plants are located. Local communities need to know if the large local employer is likely to stay 
as some communities have suffered enormous disruption and financial losses when such a major 
employer closed down (Buchele, 2013). 

This paper proposes a decision model to demonstrate the impact of risk perceptions about 
short-term plant closures on firm-level capital allocation decisions on the size, location, and 
number of their production facilities. This will provide insight into a firm’s decisions about 
where to place a new plant, how many plants to build, and how big these plants should be. This 
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model will have four versions; one where firms are risk neutral and facing absolute (national) 
shocks, one where firms are risk neutral and facing relative (locational-specific) shocks, one 
where firms are risk averse and facing absolute shocks, and one where firms are risk averse and 
facing relative shocks. Testing all models will more accurately account for the impact of 
increased variability in production and cash flows for a company. All models will be calibrated 
with plausible real-world numbers for a beef producing firm and the models testing for 
locational-specific shocks will be calibrated with plausible real-world numbers for changes in 
extreme weather based on IPCC climate change models and NOAA weather data.  
 While these plant capital decisions would have to be made by all manufacturing firms 
regardless of industry or place in the production chain, this paper focuses on animal protein 
producing firms for the empirical application, beef production plants in particular. Given the 
structure of the animal protein industry, where there is generally only one manufacturing firm 
between farm and consumer, the firm’s decision about plant structure would not need to consider 
the impact of firms further up or down a production chain. Similarly, these firms need to 
consider a limited number of inputs and outputs, thus simplifying the model and the calibration 
requirements.  
 This paper contributes to the literature in several important ways. First, it provides a 
framework for analyzing changes in risk perceptions within the context of a firm’s capital 
investment decisions in a manner that actual firms could employ, thus building on work such as 
Bloom (2009) and Aghion et al. (2021). Second, it provides policy-relevant results on the future 
stability of the current industrial organization of food processing at a time when shutdown risk 
perceptions are changing rapidly due to factors such as COVID-19, the instability of the Texas 
electric grid, and an overburdened international supply chain. Third, it presents evidence on the 
role of risk neutrality or the degree of risk aversion on a firm’s capital investment decisions and, 
thus, the stability of those decisions in periods when risks are perceived to be changing rapidly. 
Lastly, it assesses the different impact of absolute and relative shocks. Taken together, these 
results provide some insight into the changes to be expected in the location and organization of 
food manufacturing in the U.S. 
  
THEORETICAL MODEL  
Risk Neutral Absolute Risk Shock Model 
 We assume a risk-neutral firm is working to meet a specific range of demand for its 
product(s), and thus will be maximizing its profit over both input usage and all plant 
configurations that produce within a pre-specified range of the level of demand they are currently 
meeting. The theoretical model is therefore grounded in the standard profit maximization model, 
with the firm’s objective being to choose a plant configuration in order to maximize the 
discounted flow of expected profits per unit of production capacity over a known time horizon. 
To include temporary shutdown risk perception, the firm’s forecast for the random variable of 
the percent of time that the plant will be operational is assumed to have expected value of φ; or 
more intuitively, (1-φ) is the perceived share of time each production period that a plant is 
expected to be shutdown at a given location. The full model is as follows:  
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|𝑄𝑄𝑡𝑡 − 𝐵𝐵𝑡𝑡| ≤  𝜀𝜀 ∗ 𝐵𝐵𝑡𝑡. 
 

 Thus, the firm maximizes expected profit per unit produced over a set of configuration 
variables, Ωj, including scale of the plants, Si, location of the plants, gi, and the total number of 
plants, I.1 The expected profit resulting from a firm’s capital decision will be calculated over all 
time periods 1 through T, where the first time period will be the first fully operational time 
period, and over all possible plants, 1 through I. Profit in time periods after the first will be 
discounted at the discount rate r.  
 Revenue is shown by a vector of prices at the current time period for each output 
produced by the plant, Pto, in dollars per unit multiplied by the corresponding and conformable 
vector of output quantities for each type of good produced at the current plant and current time, 
Qit. Similarly, the variable costs include the vector of total input good costs for all input goods, 
PtnXit. The τito and τitn represent the total transportation costs of the output goods to the consumer 
market and input goods into the plant, respectively. This cost is calculated using the cost of 
transport, τt, in dollars per mile per unit of good2, Qito or Xit respectfully, and the distance 
traveled, either from the plant location, gi, to the consumer market, dio, or from input production 
location to plant location, din, respectively. 

Lit represents the total labor costs for a plant in one time period and is a function of wage 
rate in the current time period and location, wti, in dollars per hour, and the amount of labor 
hours needed for optimal plant production for the entire production time period, lit. lit is a 
function of the scale factor, Si. These two variables, wages and labor hours can be formatted as 

 
1 We optimize over profit per unit of output instead of profit because output is constrained to a finite range 
around goal production. Output is not a normal choice variable, but is most constrained, so maximizing profit per 
unit seems to make more sense here than focusing on total profit and favoring plant configurations that lean 
towards the upper end of the allowable production range. 
2 This may require some variables not listed in the equations as most fuel costs are in dollars per gallon, so things 
like fuel efficiency and weight capacity of the normal shipping method may be needed to fully calculate.  
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vectors depending on the level of production in a facility and to account for large differences in 
pay between plant management and floor workers. It is assumed the plants display increasing 
returns to scale as per Ball and Chambers (1982) and Morrison Paul (2001a, 2001b). All three 
papers find evidence of increasing returns to scale for meat production, and in particular beef 
production plants. Morrison Paul (2001a) notes the economies of scale are much higher for 
plants which diversify their production outputs, whereas plants specializing in only one product, 
like slaughter plants, where primal cuts of meat are the primary product, have returns to scale 
closer to constant returns. Uit represents the total utility cost of the firm per time period and is a 
function of energy price for the current time period and location, pkwti, in dollars per kilowatts, 
the number of kilowatts needed for optimal production for the whole time period, eit, the price of 
water services, pwit, in dollars per 1,000 gallons3, and the amount of water needed for one 
production time period, hit. Similar to lit, uit and hit are functions of the scale variable, Si, and are 
also subject to differences in location.4 The functional form is assumed to be, again, increasing 
returns to scale.  
 These variable costs will be multiplied by the expected value of the risk perception 
variable, φit. For simplicity, consider it the expected value of a binomial random variable 
representing the average amount of time a plant is expected to be operational in one given time 
period. φit is unique to every plant built and for every time period the plant will be operational 
and encompasses all the information the firm knows about the risks at that location, that size 
plant, that time period and relative to the number of total plants being considered. Location-
specific shutdown risks include things like the possibility of natural disasters that would affect 
plant production; for example, hurricanes in the southeast would not affect a plant in the upper 
Midwest but could affect a plant in Texas or Louisiana. Wildfires are also included as they are 
more predominant in the western part of the United States versus other areas, so plants located in 
the west would have a higher likelihood of experiencing them. Plant size-related risks include the 
increased possibility of things breaking in a larger plant, as there is a larger opportunity for 
things to break with more equipment. As we have seen with the ongoing COVID-19 pandemic as 
well as many other viruses, with more people in a space there is also a greater chance of a large 
disease outbreak that could shut a plant down, especially if that plant is located in a more 
populated area versus a less populated one. This could also affect larger plants more so than 
smaller ones, shifting their φ distributions.  
 Lastly, the fixed costs will include all costs of building the plants and purchasing the 
machinery. FCi is also assumed to be a function of scale, and as with other variables above it will 
display increasing returns to scale, but at a decreasing rate.  
 The optimization equation in (1) is subject to several constraints, listed below it. The first 
five indicate the relationships between group variables in the objective function proper and are 
used for ease of reading. The next two are feasibility constraints. The second feasibility 
constraint as well as the three constraints after it, are all functions of the plant scale. The last 
constraint states the difference between total production for the firm and their goal production is 
some small percentage, ε, of the goal production level. This goal production level is based on the 
firm’s belief about demand for the product and allows us to consider plant configurations that 

 
3 Again, some intermediate price relations may be needed if water rate prices are presented in cubic feet instead of 
1,000 gallons  
4 Water prices in particular are subject to locational differences in prices due to different water rate scales, which can 
unevenly affect plant costs for difference scales.  
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yield slightly different total firm outputs, but not configurations that stray too far from the firm’s 
goal output. 

This model serves as the basis for the other three model types where risk aversion or 
relative risk shock, or both are incorporated. Thus, for ease of reading, this model will be 
referred to as the ‘base model’.  
 

Incorporating the Perception of Relative Risk Shocks 
This model can be generalized to show relative risk shocks, and climate change will be used here 
as an example of a shock to relative risk perceptions. The model uses the same objective function 
as the base model but changes the calculation of the φ variable. This change reflects the firm’s 
beliefs about how risk levels at specific locations will change relative to each other over time, 
due to things like climate change or other time and locational variant risks. In the base model φit 
is the measure of risk perception a firm has for that plant location and time period. In this model 
it will be defined a bit more explicitly where:  

𝜑𝜑𝜑𝜑𝜑𝜑 = 𝐹𝐹(𝜌𝜌𝑡𝑡 , 𝛾𝛾𝑖𝑖 , 𝜂𝜂𝑖𝑖𝑡𝑡)    (2) 
𝜌𝜌𝑡𝑡 = 𝐹𝐹(𝑡𝑡) 
𝛾𝛾𝑖𝑖 = 𝐹𝐹(𝑖𝑖) 
𝜂𝜂𝑖𝑖𝑡𝑡 = 𝐹𝐹(𝑖𝑖𝑖𝑖) 

ρt is the set of all time-variant risks affecting short term closure to the plant in time t, γi is the set 
of all locational-specific risks to the plant, and ηit is the set of all time- and locational-variant 
risks to plant i at time t. Risks that are not locational or time variant are not included as they 
affect all times and locations equally and therefore do not alter optimal configuration choice. 
Risks in the ρ set are a function of only time within the life of the plant, these could include 
things like machinery wear or obsolescence, and do not change between location. Risks in γ are 
risks which do change between location, these include risks due to plant size as well as plant 
location, but they do not change with time. These risks are the major contributor to differences in 
φit in the base model. Lastly, η risks are those that change with time and plant. These risks would 
include changes in the perception of extreme weather occurrences since that would, if climate 
change is accounted for, change over time and over location. Previously the values for ηt and ρt 
were constant throughout the productive life of the plant, but in this model, to focus empirically 
on climate change, which will affect both location and time risk, the ηit variable will now be a 
function of how the risk will change through time and by location. ρt continues to be held 
constant but could be made to change over time for other time variant and location constant risks 
the firm would like to consider. 
 
Incorporating Risk Aversion 
 The risk averse model is similar to the risk neutral model. The firm is assumed to 
maximize a different objective function, using the common mean-variance formulation of the 
profit function that is the objective function for risk neutral firms. The formulation allows for the 
modeling of variable levels of risk aversion using λ as a firm-specific risk aversion parameter 
(Varian, 1992). The risk aversion parameter λ penalizes plant configurations with more variation 
in profit, with more risk averse firms imposing a larger weight on the variance penalization term.  

To compute the variance in profit, we leverage the assumed binomial nature of the 
shutdown risk for which given an expected value of φ, the variance will be φ(1- φ). Thus, given 
an expected value of φ for the shutdown risk, the variance of profit will be φ(1- φ) multiplied by 
the square of the variable part of the profit function. Only the variable components of the profit 
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function need be included since random plant closures do not affect fixed components like 
construction or equipment costs and loan payments. The risk averse optimization model is thus,  
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subject to the same constraints as in the risk neutral decision model and where the parameter λ is 
the measure of risk aversion for the firm. 
 
Incorporating Relative Risk Perception Shocks and Risk Aversion 
To incorporate both relative risk perception shocks and risk aversion the last model uses the 
same optimization equation (3) as in the risk averse model above, but also uses equation (2) to 
incorporate possible time and locational shocks in the calculation of φ. Thus, this fourth model 
accounts for both risk aversion and  relative risk perception shocks. It does not add additional 
changes to the model over those described in the three models above but does include all 
additional changes described separately above into one single model.  
 

EMPIRICAL MODEL: PLANT CONFIGURATIONS IN BEEF PRODUCTION 
Risk Neutral Empirical Model 
 While the theoretical model of this paper can be generalized to most firms making plant 
building decisions, to allow for empirical analysis several assumptions limiting the generality of 
the model will be made. The first of these assumptions is the kind of firms being considered. The 
empirical model presented here is calibrated to match plants rendering live cattle into primal cuts 
of beef.5 Because primal beef production has few variable inputs (live animals, water, energy, 
labor) and has a simple production function (primal cuts of beef are pretty close to constant 
proportions per carcass), this application allows for more accurate, feasible modeling than many 
industries. The production time period considered will be one year. We assume three firm sizes 
(or types) in this calibration, each with its own goal production level Bt. This is based on the 
structure of the beef industry where four very large firms share 80% of the market, and the rest 
of the fringe firms share the remaining 20%. These fringe firms can be either large or small. The 
total goal production for these firms is as follows: 4 million, 800,000, and 400,000 head per year, 
for representative big four, large fringe, and small fringe firms, respectively. Given the 
significant differences in these goal production levels, the scale variable will be assumed discrete 
such that there are five sizes of plants: small, medium, large, jumbo, and titan processing 100, 
500, 1,000, 2,000, and 5,000 head a day, respectively, effectively covering the entire range of 
plant sizes observed in the U.S. beef industry. Firms can choose to have any number of plants 
from one to twelve. The fringe firms will only be given a choice between small, medium, and 
large plants, whereas big four firms will only be given the options of large, jumbo, and titan 
plants. These scale assumptions will affect all variables that are a function of scale, making those 
variables discrete with three choices per firm type as well. For these scale-dependent functions, 

 
5 This will exclude all animal protein goods that are further processed, like pre-marinated cuts or retail cuts, but 
include all primal cuts of meat, i.e., boxed beef.  
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increasing returns to scale will be assumed. Using the findings of Morrison Paul (2001a and 
2001b), the increasing returns are such that for every 1% increase in production there is a 0.95% 
increase in costs. While it would be preferable to have different variable-specific returns to scale 
levels for each of the variables, there is a limited amount of data on the non-animal costs 
associated with meat production plants (Lusk et al., 2021), and therefore the above form of 
increasing returns is applied to all scale-dependent variables.  

These plant production levels line up with the industry designations of small, medium, 
and large plants, and anything over 1,000 head a day is considered larger still. The use of the 
jumbo and titan plants allows the big four firms to stay within the 12-plant maximum but also 
produce within their goal production range. This 12-plant limit is consistent with industry reality, 
as no current firm, including the big four sized firms like JBS, Cargill, or Tyson, operates more 
than this number of beef processing plants.6 

The value used for the live animal costs, Pitn, is a weighted average of monthly 
accumulated 5-area7 prices for both heifer and steer as reported by USDA-AMS from November 
of 2018 until August of 2021. These are reported in dollars per hundred-weight (cwt). The 
average weight of cattle will be 14 cwt, as this is the average weight between steers and heifers 
in the reports weighted by the total amount for each sex. The value for input quantity will be 
dependent on the scale of the plant as noted above. The output good is boxed beef, or primal, 
cuts, of beef. Output prices will be an average of the daily box beef cutout values taken from the 
same USDA-AMS reports, again in dollars per hundred-weight. Given that boxed beef cutout 
estimates are a calculated value of a full carcass based on the prices from the individual primal 
cuts, output units will be the same as the number of head per day input levels, but the weight per 
head will be 65% of the live animal weight (Saner and Buseman, 2020). Using the cutout prices 
allows the functional form of the production function to remain flexible in empirical calculations 
and limits the output to one good. Labor costs per state come from the U.S. Bureau of Labor 
Statistics’ occupational employment and wage statistics for slaughterers and meat packers. Price 
per gallon of diesel for transportation costs is an average of #2 diesel prices for the United 
States8 over the last 20 years, with an average fuel economy of 6.5 miles per gallon (Andrews, 
2021). The numbers and sources for these variables are listed in Table 1.  

 

 
6 Fewer than 12 beef production plants that produced boxed beef, this does not include plants that do further 
processing.  
7 The five area prices include Texas/Oklahoma/New Mexico, Kansas, Nebraska, Colorado, and Iowa/Minnesota 
feedlots.  
8 The average price of diesel over the entire United States is used due to the shipping truck moving through more 
than one state or area while transporting goods. 
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The locations available for plants are all locations of actual beef production plants. By 
specifying the location choices, area-specific electric prices, water rates, and construction cost 
can be used as well as enabling us to estimate shutdown risks based partly on real-world natural 
phenomena.9 The labor costs per hour and electric prices per kilowatt hour are listed in Table 2 
along with the locations. Given the differences in how water rates are scaled in different 
municipalities, water rates will be presented as total cost of water for the entire production time 
for each plant scale and location. These are presented in Table 3.  

 

 
 

9 Here these include occurrences of extreme heat, extreme cold, tornados, ice storms, hurricanes, floods, blizzards, 
and wildfires.  



11 

 The distance between the plant and the consumer market will be a weighted average of 
the distance from the plant location to the most populous city in each of the 48 contiguous states. 
The weights are population in that state relative to the total population of all included states. The 
distance from that plant to the input production site, assumed to be a feed lot, will be calculated 
the same way, an average of the distance between that plant and a series of feed lots.10 While this 
manner of calculating for distance does not accurately reflect how goods are transported to the 
consumer market in reality,11 the cost for transportation in this model comes to a mean of about 
10% of profits for medium through titan sized plants. Some, but not all, small plants have 
negative profit levels, transportation costs are 42% of profits for small plant locations with 
positive profits. While it would be preferable to have each model calculate transport costs only to 
the areas they would cover in that configuration, computational limits did not allow for that kind 
of specification and the actual impact on simulated profits is likely to be small relative to total 
firm profits. Distances for inputs and outputs are listed in Table 4.  
 

 
 

Fixed costs will include those costs for the construction of the plant as well as the 
machinery inside of it. According to Newlin (2020), a small processing plant would cost $400/ft2 
for construction cost and $400,000 total for equipment costs. The construction cost per square 
foot of space will be scaled by the cost of construction in that area versus the national baseline as 
per RSMeans (2022) construction data. The space requirements for small plants are based on 
Newlin (2020) and on individual plant descriptions provided by Cargill on their company 
website (Cargill, 2022). Once the total fixed costs for small plants at each location were 
calculated they were scaled up by location for the remaining plant sizes according to the assumed 
economies of scale stated earlier and taken from Ball and Chambers (1982) and Morrison Paul 
(2001a, 2001b). Total fixed costs are listed in Table 5. 

 
10 The locations for feedlots are Dalhart, TX, Hartley, TX, Kersey, CO, Malta ID, Scott City, KS, Texhoma, OK, Ulysses, 
KS, Wellton AZ, and Yuma, CO. These locations were chosen in a comparable manner to the possible plant 
locations, e.g., there is a feedlot currently operating in that location. 
11 Firms would split the consumer market between the different plants they own such that the plants would ship to 
the closest consumer markets and not to ones far away from them when another plant would be closer.  
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Labor, electric, and water quantity requirements are also scale dependent. Based on 
estimates from Maddock (2021), labor, electric, and water costs amount to 16%, 10%, and 3% of 
a plant’s gross revenue per production cycle. The average total cost of each input was calculated 
by multiplying the gross revenue of each plant size by the requisite percentage and then scaling it 
appropriately to reflect the increasing returns to scale. The median price for each non-cattle input 
was then used to compute the appropriate quantity of inputs for each plant size. These quantities 
are listed in Table 6 below. This quantity was then used for all locations, combined with the 
location specific prices to produce input costs that vary by location. The discount rate will be 5% 
and the total life of the plant is assumed to be 50 years.  

 
 

Relative Shock Empirical Model 
The values of φ are varied over several calibrations and examples to assess the effect shifts in 
risk perception and recognition of climate change will have on the optimal choice set. Five sets 
of φ were used to test for a shift in the optimal plant configuration from the baseline, risk neutral 
scenario. The plant size variation in φ, as stated above, has smaller values of φ for larger plants, 
indicating those plants have a higher likelihood of temporary shutdown. φ will also have 
locational variation linked to weather specific risks, including extreme heat or cold, blizzards, 
and other weather phenomena listed in footnote 9. An index of weather hazard risk among the 
states, accounting for the state size, was created. This weather hazard index was multiplied by 
the general φ values for each plant size to make a full set of individual φ values for every plant 
location and size. The minimum and maximum for each plant size within the five φ sets is listed 
in Table 7, and the full set of φ values for all models is in appendix A.  
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The weather hazard index was developed from the projections for how extreme weather 

phenomena would change in several reports by the Intergovernmental Panel on Climate Change 
(IPCC) including the 2018 report on the impacts of warming by 1.5°C on natural and human 
systems and the 2012 report on managing extreme weather and disasters in advance of climate 
change. These projections show heat-based phenomena, extreme heat and wildfires increasing as 
climate change continues and cold based phenomena, extreme cold, blizzards, and ice storms, 
decreasing. Hurricane incidence is projected to decrease in number but increase in intensity and 
tornado incidence is unpredictable due to its highly localized nature. Wildfires, though not 
directly related to climate change, are highly correlated to the occurrence of drought, which is 
affected by climate change and increased temperature, and so projections of drought are used for 
wildfire projections. Both magnitude levels of changes in each of the included weather 
phenomena are detailed in Table 8 

 
 

The reports project changes in these phenomena for global regions12 which, when 
combined with the impact of each individual weather hazard on possible plant localities, can be 
used to model the regional impact of changes in different weather phenomena. The local hazard 
contribution index was created using data from the national oceanic and atmospheric 
administration (NOAA). This hazard contribution index gave a locational specific value for the 
impact each weather phenomena had on each locational hazard index shown in Table 9.  

 
12 The regions considered in this paper are the western north American region and the central north American 
region.  
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Risk Averse Empirical Model 
  Many of the calibration numbers for this model are the same as with the risk neutral 
model since the model is for the same firm types. However, the objective function is changed so 
instead of firms maximizing the expected present value of the discounted flow of future profits, 
they now maximize a function equal to the same expected present value of profits minus a scaled 
variance measure for the profits of that plant configuration, as discussed in the theoretical section 
above. This mean-variance framework serves to penalize plant configurations that produce more 
variable profit streams, thus being representative of the way in which a risk averse firm might 
choose to make decisions on plant numbers, locations, and sizes. The only additional parameter 
in this model is λ, which represents an absolute risk aversion coefficient. There were four values 
of λ employed to assess the impact of the level of risk aversion on the optimal plant 
configurations: 0.01, 0.05, 0.1, and 0.2. These are based on Holt and Laury (2002), designed to 
reflect a reasonable, but not extreme, level of risk aversion. All five φ sets were tested on each of 
the four λ values, resulting in a total of twenty optimal configurations for each firm type under 
risk aversion (plus another five risk neutral optimal configurations).  
 
Risk Averse and Relative Shock Empirical Model 
Similarly, as in the theory section, this model does not bring any new calibration values to the 
models, but simply combines all previously described calibrations into one single model. Thus, 
the calibrations of the base model are used, with the φ calibration as described in the relative risk 
shock section, and lastly the risk aversion is calibrated as described above in the risk aversion 
model section.  
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CALIBRATION AND RESULTS 
 Using the calibration values presented above, a grid search of all configurations was 
performed to find the optimal plant investments for each of the three firm types. To limit options 
to a feasible choice set, the set of admissible configurations will be constrained by a few 
limitations. First, there can only be one plant at each location; the decision at each location is 
only over the three admissible scales of plants for each firm type plus the option to not build a 
plant in that location. Second, the total amount of beef produced by the firm over the year must 
remain in a range around the goal production level Bt for that firm type. Plant configurations 
producing outside this production range were discarded. Once the set of configurations that meet 
that condition is calculated, the total discounted flow of profits over the 50-year planning horizon 
is computed using the calibrated parameters above for each configuration. The configuration 
with the highest profit per unit of output is the optimal configuration (thus controlling for the 
allowed differences in output across configurations). This profit calculation was repeated five 
times with each distinct set of φ's for each model type. The results of those calculations for both 
models are presented in the tables below. 
 
Risk Neutral Absolute Shock Model 

As seen in Table 10, for small fringe firms, the optimal configuration is two large plants, 
located in Cactus, TX and Hyrum, UT, and this does not change for any of the five φ sets 
Similarly for big fringe firms, also shown in Table 10, regardless of the φ set applied, the optimal 
configuration is a total of four large plants, located in Cactus, TX, Friona, TX, Hyrum, UT, and 
Omaha, NE. The big 4 firms, show in Table 10, also do not shift their investment decisions with 
changes in risk perception. The optimal configuration for big 4 firms is four titan plants located 
in Cactus, TX, Friona, TX, Hyrum, UT, and Omaha, NE. 

 
 There are several results of note both within and across the firm types. The optimal 
configuration for risk neutral firms of any size remains the same regardless of risk perception. 
This makes intuitive sense as a risk neutral firm treats an increase in shutdown risk applied 
equally to all locations similarly to an increase in cost due to a lowering of all plants’ expected 
capacity utilization. 
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Under risk neutrality all optimal configurations for firms of any size include plants in 
Cactus and Hyrum. This may be due to lower utility and fixed costs at those locations. Hyrum 
and Cactus also have lower locational risk than the average for all locations, making them more 
reliable in meeting production constraints. It should also be noted, both a big fringe firm’s and a 
big four firm’s optimal configuration consists of four of the largest plants available to them, 
adding plants at Friona and Omaha to the previous two discussed, located in the same areas for 
both firm types. Like Cactus and Hyrum, both of these additional locations have lower than 
average risk perceptions. This further supports the idea that changes in risk perception that affect 
all locations evenly will not easily trigger a change in the optimal configuration.  
 Further sensitivity analysis was done where all φ were randomly assigned an increase or 
decrease but all increases and decreases for each test were the same magnitude. The optimal 
configuration did not change from the locations of plants in the baseline results above but did 
add additional plants in Friona or Grand Island. The changes in φ to trigger these shifts are 
relatively large, and possible to test computationally, but are unlikely to occur in reality. These 
sensitivity tests indicate the results of the risk neutral model above are both stable and correct. 
Given that the optimal configurations, even when they did change, did not shift away from 
previously chosen locations, another set of φ sensitivity tests was conducted where the φ value 
for only one of the previously chosen locations, Cactus, TX, was lowered by 20%. This test 
resulted in a similar result of additional plants being added to compensate for the expectation that 
the Cactus plant would be open less often.  

A final set of sensitivity analyses on costs was performed to test if changing costs for 
locations would change optimal configurations. This was done similarly to the first set of φ 
sensitivity tests, where direction of the perturbance and magnitude were randomly assigned. The 
results of this analysis show changes in the costs for plants can trigger an optimal configuration 
change much more quickly than changes in φ. This may be due to the construction of the φ 
variable where locations within the same state have the same φ value, meaning when costs 
increase in one location within the state and decrease in another, the movement of plants from 
one location to the other does not cost the firm in increases of risk. Movement of plants within 
similar locations based on changes in φ do not have the same luxury, as costs are different 
between locations within a state and moving to a location with lower risk may incur higher 
production costs. Although the values of the percent difference may change between plant sizes, 
all plants sizes maintain the rank relationship between locations. Cactus, TX, is cheaper than all 
other plant locations and is closely followed by Hyrum, UT, another often chosen plant location. 
Overcoming the difference in cost between locations requires the shifts in φ to be larger than 
reasonably expected.  

In reality however, all plant locations in the model do have a processing plant located 
there, even if they are routinely suboptimal in the model. This could be for a number of reasons. 
First, beef processing firms do not want all of their production plants bunched together with their 
competitors or with their own plants. This would present a drain on regional resources in terms 
of labor, utilities, and available cattle. By spreading out their plants, both within firms and across 
firms, resources can be used more efficiently. Second, firms can limit transportation costs by 
spreading out plants. Demand for beef is spread over the entire country and supply is distributed 
over a significant, albeit smaller, region; thus, it makes sense to spread processing plants out so 
as to more efficiently deliver product to customers. Also, this model represents a single firm as if 
no beef plants are currently operating, but in reality, a firm must consider other firms already 
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operating within a region as separating geographically makes obtaining supplies of cattle and 
other inputs easier and less expensive.  

 
Risk Neutral Relative Shock Model 

This model follows the same calibration assumptions as those mentioned above in the 
base model section. As seen in Table 11, for small fringe firms, the optimal configuration of 
plants is two small plants located in Cactus, TX and Hyrum, UT. Similarly for big fringe firms, 
also shown in Table 11, the optimal configuration of plants is four large plants located in Cactus, 
TX, Friona, TX, Hyrum, UT, and Omaha, NE. The big 4 firms, shown in Table 12, have two sets 
of optimal configurations depending on which φ is being used, although they are very similar. 
The optimal configuration for φ sets 1-4 is four titan plants, located in Cactus, TX, Friona, TX, 
Hyrum, UT, and Omaha, NE. Set 5 is the same with the addition of one large plant located in 
Grand Island, NE.  

There are several results of note both within this model and as compared to the base 
model. The lack of changes in fringe firms supports a similar conclusion as that of the base 
model, that changes in risk perceptions that do not affect the relative relationship between 
locations and plant sizes do not have an effect on optimal plant configurations for risk neutral 
firms. These results match those of the base model, even when including changes in relative risk 
perception such as for climate change. The only difference of the additional large plant for the 
big 4 firms in φ set 5 is assumed to be to maintain the level of production required by big 4 
firms. The specific locations for each of the plants in the optimal configurations matches those in 
the base model as well, further supporting the risk relationship conclusion. 

The differences between the two levels of climate change impact, one with the most 
expected climate change outcomes and with more severe levels of climate change outcomes, are 
nonexistent. Even for severe climate change the optimal plant configurations remain the same.  
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While these models do have some differences between location, appears that the changes 
between location as φ deteriorates over the life of the plant, are not enough to trigger a change in 
optimal configuration.  

 
Risk Averse Absolute Shock Model  

These models include a set of four full models for each firm size, each with its own risk 
aversion level, represented by an absolute risk aversion coefficient λ, as discussed above. Results 
are presented grouped by firm size. As seen in Table 13, for small fringe firms with a low level 
of risk aversion, the optimal configuration is four medium plants, located in Cactus, TX, Friona, 
TX, Hyrum, UT, and Omaha, NE, and this decision does not change with changes in shutdown 
risk perceptions. This optimal configuration of four plants at these locations appears at least once 
for every level of risk aversion as an optimal configuration for all small fringe firms in the risk 
averse model (Tables 13-16). These models show a preference for a larger number of smaller 
plants as compared to the risk neutral models above, which is the expected outcome for decisions 
made under risk aversion. Interesting to note, however, is that the level of risk aversion does not 
seem to increase the affect, since higher levels of risk aversion do not result in a larger skew 
towards smaller plants. The differences in optimal configuration are due to either maintenance of 
required production levels or of extremely close profit levels where even slight changes lead to a 
switch in the optimal configuration.  
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 For large fringe firms there is a similar pattern of one configuration occurring in all 

models regardless of risk aversion levels. The optimal configuration here is a set of eight 
medium plants located in Cactus, TX, Fort Morgan, CO, Friona, TX, Grand Island, NE, Hyrum, 
UT, Milwaukee, WI, Omaha, NE, and Schuyler, NE (Tables 17-20). Again, deviations from the 
“baseline” eight medium plant configuration occur, but all changes represent increases in plant 
size at a location already present and are explained as a function of maintaining production levels 
while facing lower assumed production capabilities due to lower φ levels.  
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Lastly, big four-sized firms show more variation than other firm types in this model as 
the level of risk aversion increases, although all levels of risk aversion show optimal 
configurations with one to two titan plants, a larger number of jumbo plants, and an even larger 
number of smaller plants (Tables 21-24). There does not seem to be a common optimal 
configuration like the other firm types, however. As compared to the risk neutral models, these 
results again support the conclusion that risk averse firms favor optimal configurations with 
larger numbers of smaller plants.  
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Risk Averse Relative Shock Model 
This model includes 20 sets of model results for each firm type as the model finds the optimal 
plant configuration set over five φ sets and four λ values. Again, the prevailing pattern of limited 
change in the optimal configuration within the model continues. For small fringe firms, across all 
λ values, the optimal configuration for the first φ set is two large plants, one in Cactus, TX, and 
Hyrum, UT. For all other φ sets (2-5), the optimal configuration is two large plants at Cactus TX, 
and Hyrum, UT, with an additional small plant in Friona, TX. These results are detailed in Table 
25. For big fringe firms, the optimal configuration for φ sets 1-4 across all λ values is four large 
plants located at Cactus, TX, Friona TX, Hyrum, UT, and Omaha, NE. For φ set 5 across all λ 
values, the optimal plant configuration only adds a medium firm at Grand Island, NE. These 
results are detailed in Table 26. Big four firms show the largest variation, where for φ sets 1 and 
2 the optimal configuration is four titan plants in Cactus, TX, Friona, TX, Hyrum, UT, and 
Omaha, NE, and two large plants at Grand Island, NE, and Schyler, NE. For φ set 3 and 4, the 
only change is the addition of another large plant located in Fort Morgan, CO. Lastly, φ set 5 
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adds another additional large plant located in Plainwell, MI. These results are detailed in Table 
27.   

 
Again, as with the previous relative risk shock model, two levels of relative risk shock, 
representing the different predictions of climate change outcomes were tested and there was no 
difference in optimal plant configuration between these two levels of climate change shock 
within the model. However, the results of this model do show some changes from the other 
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model types. Optimal configurations for this model show more plants than both risk neutral 
models at times but less than the risk neutral absolute shock model. As noted previously, one 
explanation for any alteration in the optimal plant configurations as compared to the risk neutral 
models would be to maintain goal production levels over increasing assumed plant shutdowns. 
Previously in the risk averse absolute shock model, this risk was averted by increasing the total 
number of plants in the optimal configuration as all plant locations were suddenly equally more 
expensive. However, in this model, relative risk shocks can be better averted with spatial shifts in 
optimal configurations, leading to a level of plants in-between the risk neutral models and the 
risk averse absolute shock model. However, the same plant locations, Cactus, Hyrum, and then 
Friona appeared in all optimal plant configurations. 
 
Discussion 

Collectively these results point to several things. Risk perception shocks that alter the 
relative levels of risk perception are much more likely to alter optimal production configurations 
than risk perception shocks that affect the absolute level of risk perception. In terms of the beef 
industry this would mean shocks that have widespread effects would not alter the optimal 
industry organization, but regional risk changes, affecting only the local or regional area could. 
So, as far as the effect of the covid-19 pandemic is concerned, optimal beef plant configurations 
do not seem poised to change since that risk perception shock affected all locations and sizes 
equally. This makes economic sense if one considers the changes in φ as changes in expected 
costs for a firm to meet a specific level of production. If there is a global decrease in φ across all 
locations due to heightened visibility of a non-location-specific risk, costs at every location and 
plant size will have increased, meaning the optimal configuration for a firm will not change as 
that configuration is still the optimal, it is simply optimal at a higher cost. In comparison, a non-
global φ change shifts the relative costs of production across competing locations, meaning the 
locations with decreased φ have become more costly to produce at than before the change. Such 
relative changes could trigger optimal configuration changes if one of the previously optimal 
locations and sizes becomes too costly to produce at as compared to another, previously 
unchosen location and size. However, the levels of relative change in φ values that must occur to 
trigger a change in optimal plant location are relatively high. Thus, local or regional risks are 
possible drivers of change in the spatial organization of beef processing but are likely to occur 
over longer periods of time. 

The other collective result relates to the role of a firm’s risk preferences. Comparing 
results from the risk averse and risk neutral models, we see that risk averse firms choose to build 
a larger number of smaller plants than firms that are risk neutral. This manifests in the real world 
as differences in behavior between firms which are risk neutral and risk averse, which as 
discussed above could be the difference in behavior between publicly traded and privately held 
firms. It should also be noted, these real-world conclusions are tied to the beef industry, and 
industries like it, since that is where the empirical values for the calibration come from. An 
industry that is sufficiently dissimilar to the beef industry may have different results, as they will 
surely have different optimal locations and different operating costs, although the same 
theoretical model and methodology can be applied. 
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CONCLUSIONS 
 The theoretical models presented in this paper introduce a shutdown risk perception 
variable to a firm’s capital investment decision. Firms were modeled as both risk neutral and risk 
averse, allowing a comparison of the role of risk perceptions across firm objective functions. 
Two types of risk were also modeled, one absolute level absolute shock and one relative shock 
across both risk neutral and risk averse firms. This risk perception variable, φ, accounts for 
heterogeneous differences in perceived shutdown risks based on the firm’s past experiences and 
future expectations about temporary plant shutdowns. The decision models were calibrated to 
approximate a real-world beef production firm considering twelve plant locations and three plant 
sizes per firm type. There were three firm types, representing distinct parts of the beef market: 
big four firms, which control the majority of the market, large fringe firms and small fringe 
firms. These differently sized firms have total annual production goals that differ by an order of 
magnitude. 

The results show that changes in perceived shutdown risk that maintain relative risk 
relationships between plant locations and sizes do not change the optimal plant configuration 
decision for risk neutral firms. The results for risk averse firms show that shifts in risk 
perceptions can lead to changes in the optimal plant configurations. For absolute risk shocks 
these changes seem to arise from a need to maintain production levels in the face of increased 
closure risk in all locations. For relative risk shocks there is also an increase in optimal plant 
numbers to maintain production ability, but plant number increases were not as high as the risk 
averse absolute risk shock model. This is due to the firm’s ability to alleviate risk in a more cost-
effective way, through spatial shifts rather than in absolute numbers of plants.  
 Based on these results, heterogeneous plant closure risk perception variables and shifts in 
those perceptions do not appear to affect optimal plant configurations if the risk shock does not 
alter the relative risk between locations and the firm is risk neutral. However, if a firm is risk 
averse, the number of plants in the optimal configuration is higher than in the optimal 
configuration for a risk neutral firm. So, whether a firm is risk averse or risk neutral does have 
the expected effect on optimal plant configurations in that risk averse firms favor configurations 
with a larger number of smaller plants. If the relative risk between plant locations does change, 
risk can be alleviated with the additional plants in other locations. This is seen in both relative 
risk shock models, both risk neutral and risk averse.  

Based on these results, we should anticipate little change in the organization of the beef 
processing industry in the United States as a result of the plant closures seen during the COVID-
19 pandemic since this newly perceived pandemic risk affects all areas similarly. Even though 
the disruption to the beef supply chain was economically significant to processors and retailers, 
the pandemic is unlikely to lead processors to alter their plant sizes and locations beyond adding 
a small amount of reserve processing capacity. Optimal plant configurations will be maintained, 
with risk neutral firms operating a smaller number of larger plants than risk averse firms. 
However, relative risks, like climate change could trigger a spatial change over the next several 
years to alleviate potential future risk.  
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