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The Economic Value of Intraday Data in Hedging Commodity Spot Prices 

This article shows how high-frequency market data relates to low frequency events by examining 

the economic value of using intraday data to hedge commodity spot prices in the futures market. 

We use the realized minimum-variance hedging ratio (RMVHR) framework, which depends on the 

realized futures-cash covariance matrix forecast. We focus on the crude oil crack and soybean 

crush industries and consider both multiple and single-commodity portfolios, as well as different 

forecast strategies based on intraday data. We use the Naïve hedging ratio as the benchmark to 

investigate the performance of intraday data-based hedging models. Our results suggest that for 

each portfolio considered, there is usually one intraday data-based hedging strategy that 

outperforms the Naïve. Superior performance, however, is not always statistically significant, for 

the crack industry. Our estimates place the advantage of using intraday data between $7,155.00 

and $287.50 per contract and year on average, with these values representing the decline in the 

portfolio’s standard deviation achieved through hedging. This points at a promising path to 

improving the performance of hedging in the commodity space based on intraday data. 

Key Words: intraday data, hedging effectiveness, economic value, crude oil crack, soybean crush. 

1. Introduction 

Since 2020, energy and food prices have experienced one of the largest increases since the 

beginning of the 21st century. Resulting from a combination of supply and demand factors, crude 

oil prices increased by 440% from April 2020 to June 2022, and soybean prices doubled from April 

2020 to June 2022 (see figure in Appendix A). The energy and food price shocks have caused 

rising global inflation, slowing global economic growth, and heightened food insecurity and social 

unrest (Neufeld, 2022).  

Increased price volatility has also induced greater marketing and operation risks for producers, 

users and processors in the energy and food supply chains. This has placed the need for hedging 

at the center of commodity-related businesses and increased the interest in derivative markets. 

Futures are a popular price risk management instrument among commodity traders. In a simple 

scenario where the hedger holds a single physical asset, hedging consists of building a portfolio 

that combines the hedger’s position in the physical asset and an offsetting position in the futures 

market. An important hedging decision concerns the optimal position in the futures market that 

meets the objectives of the hedger. The popular minimum variance hedging ratio (MVHR) 

establishes the position in the futures market that minimizes the portfolio risk (Ederington, 1979). 

MVHR is expressed as the ratio of the futures position relative to the spot position and depends on 

the joint dynamics of futures and cash prices. Specifically, the MVHR is calculated as the ratio of 

the covariance between the spot and futures returns and the variance of futures returns over the 

investment’s holding period. As a result, the MVHR’s success in minimizing the portfolio risk 

depends on the hedger’s ability to forecast the price (co)variance over the holding period.  
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An extensive literature has proposed different approaches to model the futures and spot price 

joint dynamics to accurately forecast the covariance matrix. Wang et al. (2015) review this 

literature and compare 18 of these models against the Naïve hedging strategy using weekly spot 

and futures price data across 24 futures markets. The Naïve hedging strategy fully offsets spot 

positions with futures contracts, it does not require to forecast risk, is equivalent to a MVHR=1 

and assumes that futures and spot prices are perfectly correlated over the holding period. Wang et 

al. (2015) conclude that no strategy dominates the Naïve approach consistently and significantly. 

Thus, hedgers should gain little value from investing in sophisticated hedging strategies, which 

speaks volumes about our ability to forecast risk.  

Over the past decade, the finance literature has achieved superior risk forecasting measures 

using intraday price data which has become widely available as electronic trading in financial 

markets has expanded to dominate floor trading. The Heterogeneous Autoregressive (HAR) model 

proposed by Corsi (2009) has emerged as the workhorse in volatility forecasting given its 

consistent performance in different empirical settings. The HAR model forecasts daily realized 

variance (RV) based on a linear function of past RVs averaged at daily, weekly and monthly 

horizons, with RV being the sum of finely sampled squared returns within the day. While different 

studies have attempted to improve the simple HAR-RV model, they have achieved mixed results, 

with HAR usually performing as well, if not better than more sophisticated alternatives (Sévi, 2014; 

Ma et al., 2014; Qiu et al., 2019; Audrino et al., 2018; Ding et al., 2021). 

Recent articles have applied the HAR structure to forecasting price return covariance matrices. 

This poses challenges related to the curse of dimensionality that may result in lower forecasting 

performance, and the need to ensure positive semi-definiteness (psd) of the covariance matrix. An 

array of solutions imposes different restrictions on the covariance matrix. Some approaches ensure 

psd by relying either on log transformations (Bauer & Vorkink, 2011), covariance Cholesky 

decompositions (Symitsi et al., 2018), or the Wishart Autoregressive model (Gouriéroux et al., 

2009). Zhang et al. (2019) minimize the curse of dimensionality by building on Audrino & Corsi 

(2010) and Asai & McAleer (2017). To prevent overparameterization, they extend the HAR-RV 

models to directly forecast the realized covariance between two price returns, rather than using the 

full realized covariance matrix for this purpose.    

The growing literature based on high-frequency market data has often failed to show how 

these data relate to low-frequency economic events. A few exceptions have built on improvements 

in the ability to forecast risk and revisited optimal hedging by using intraday data (Harris et al., 

2010). Markopoulou et al. (2016) propose the realized minimum variance hedging ratio (RMVHR) 

based on the realized variance and covariance calculated using 5-minute intraday data. Then, they 

assess the RMVHR’s predictability using an array of econometric models including the HAR 

model structure. They compare hedging performance of RMVHR relative to MVHR based on 

lower frequency data. They focus on a sample of two asset classes, stocks and exchange rates, and 
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conclude that the use of intraday data outperforms daily data in risk management. Like 

Markopoulou et al. (2016), Qu et al. (2019) and Kuang (2022) show that high-frequency data help 

generating more accurate covariance forecasts and hedging ratios for the CSI 300 Index and US 

equity-oil cross-hedges than daily data.    

However, the utilization of high-frequency data in commodity hedging remains unexplored 

due to the lack of intraday spot prices. We propose an approach to overcome this issue and 

investigate for the first time whether intraday data can improve commodity hedging. In our 

analysis, we generate intraday cash prices using the cost of carry model for storable commodities 

(Pindyck, 2001; Main et al., 2018) which establishes the relationship between spot and futures 

prices through the carrying costs. The latter represent the expenses associated with carrying a 

commodity into the future and include forgone interest, physical storage costs and the convenience 

yield. Specifically, we assume that the cost of carry is constant within each day but changes across 

days, which allows us to derive intraday cash prices by subtracting the cost of carry from intraday 

futures prices. We then study whether the RMVHR strategy can outperform the Naïve hedging, 

thus shedding light on whether intraday data have any value for hedgers in the commodity space.. 

We focus on the crude oil cracking and the soybean crushing industries whose margins are 

measured through the crack and crush spread, respectively. Consequently, our analysis offers 

valuable insights for commercial traders along these supply chains who hedge in the futures 

markets. Improving hedging outcomes can also enhance welfare by increasing individual firms’ 

utility, improve allocation of commodities over time, as well as investment decisions (Willems and 

Morbee, 2010). Crude oil can be cracked into gasoline and diesel/heating oil, for transportation 

and heating. Soybean can be crushed into soybean meal and oil, for livestock feeding and 

cooking/food manufacturing. Their margin spreads are among the most highly traded in the 

Chicago Mercantile Exchange (CME) where futures contracts available allow simulating the 

financial aspects of their businesses. In terms of all energy futures traded, crude oil, gasoline and 

heating oil represent the 1st, 3rd and 4th most traded contracts in the CME, reflecting the economic 

relevance of this industry. Soybeans, soybean oil and soybean meal rank 2nd, 4th and 5th, with the 

complex as a whole being first in terms of agricultural commodities’ trading volume (CME, 2022). 

Consideration of the crack and crush spreads requires a multivariate portfolio approach that is 

substantially more complex than the single-asset model used by the research pioneering hedging 

based on intraday data (Harris et al., 2010; Markopoulou et al., 2016; Qu et al., 2019; Kuang, 

2022). This allows us to investigate whether complexity pays off. 

The multivariate portfolio model was initially proposed by Anderson & Danthine (1980, 1981) 

and allows for the covariation of cash and futures input and output prices. Since spot commodity 

prices are rarely available at intraday frequency, empirical studies on the crack and crush spreads 

have generally used daily (Collins, 2000; Liu et al., 2017), weekly (Tzang & Leuthold, 1990; 

Garcia et al., 1995; Haigh & Holt, 2002; Alexander et al., 2013), or even monthly (Fackler & 
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McNew, 1993) prices. By relying on generated intraday spot prices, we calculate the optimal 

hedging positions that allow minimizing the portfolio return variance based on the assumption of 

portfolio rebalancing on a daily basis. Drawing on HAR-type models, we consider forecasting the 

necessary (co)variances following different approaches, from independently forecasting the 

components of the (co)variance matrix (Zhang et al., 2019), to jointly forecasting spot and futures 

(co)variance for each market while imposing psd (Bauer & Vorkink, 2011, Qu et al., 2019, Symitsi 

et al., 2018), and even directly forecasting the RMVHR as in Markopoulou (2016), Qu et al. (2019) 

or Kuang (2022).   

To provide information on the value of using intraday data for hedging purposes, we compare 

our results with the Naïve hedging ratio that Wang et al. (2015) have shown to outperform other 

more sophisticated hedging strategies. We choose the Naïve hedging ratio as a benchmark because 

it does not require forecasting risk and is thus independent from the data frequency and modeling 

approach.2. We provide a monetary estimation of this value by relying on hedging effectiveness 

measures. 

We use both futures and cash prices for the commodities involved in the crack and crush 

spreads. Futures prices are observed intraday, while cash prices are observed daily and transformed 

into intraday prices. Our period of analysis starts on 01/02/2009 and ends on 06/17/2022. In general, 

results suggest the combination of advanced hedging strategies and high-frequency data produces 

results that outperform the Naïve strategy. Superior performance is statistically significant for 

agricultural commodities, but less so for energy commodities. Our estimates place the advantage 

of using intraday data between $7,155.00 and $287.50 per contract and year on average, with these 

values representing the decline in the portfolio’s standard deviation achieved through hedging.   

2. Methodology 

In this section we provide an overview of the methods used in the paper. We start with the 

description of the hedging framework, which allows identifying the optimal hedging ratios. We 

then move into the modeling and forecasting of risk during the hedgers’ holding period. Lastly, we 

present the hedging efficiency measures.  

2.1. The hedging framework 

Our hedging strategy aims at minimizing the return variance of a portfolio that includes cash and 

 
2 Naïve is the best hedging strategy in Wang et al. (2015). We do not compare hedging results with strategies based on 

daily data as these cannot rely on HAR models. Instead, they require other approaches such as the ones described in 

Wang et al. (2015). As a result, differences across hedging performance can either be due to data or to the modeling 

approach.  
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futures positions of outputs and inputs in the crude oil crack and soybean crush industries. We 

normalize output prices on a per unit of input (i.e., barrel (bushel) of crude oil (soybeans)) using 

the technical specifications of the production process as follows: 

𝑃𝑧,𝑡 = [𝑙𝑜𝑔(𝑝𝑧,𝑡
𝑎 ) 𝑙𝑜𝑔(𝑝𝑧,𝑡

𝑏 (𝑏 𝑎⁄ )) 𝑙𝑜𝑔(𝑝𝑧,𝑡
𝑐 (𝑐 𝑎)⁄ )]

′
 , where z = s, f denotes either spot or 

futures prices and 𝑙𝑜𝑔(. )  is the natural logarithm function that we apply on prices to reduce 

heteroskedasticity and promote normality in price distribution. Coefficients 𝑎, 𝑏, 𝑐 are technical 

coefficients representing the crude oil crack (soybean crush) production functions; 𝑎 represents 

the units of crude oil (soybeans) needed to produce b units of gasoline (soybean meal) and c units 

of heating oil (soybean oil). Typically, the cracking industry generates 2 barrels of gasoline and 1 

barrel of heating oil from 3 barrels of crude oil. Using the futures contracts available from CME 

(2017), the spread can be hedged using the 3:2:1 rule (long a = 3 crude contracts and short b = 2 

and c = 1 gasoline and heating oil contracts, respectively), with each crude oil contract representing 

1,000 barrels. Similarly, the soybean crushing industry produces 11 pounds of soybean oil and 44 

pounds of soybean meal from 1 bushel of soybeans. Considering the soybean complex futures 

contracts’ technical specifications, the soybean crush margin can be hedged using the 10:11:9 rule 

(long a = 10 soybean contracts and short b = 11 and c = 9 soybean meal and oil contracts, 

respectively) (CME, 2020), where each soybean futures contract represents 5,000 bushels. While 

𝑎, 𝑏 and 𝑐 coefficients vary by industry, for ease of notation we do not use different symbols. P 

and 𝑝 represent transformed and untransformed prices and superscripts a, b and c are indicators 

for the different output and inputs.    

Assume the hedger rebalances the portfolio daily; on day t-1 the crack (crush) hedger longs 

crude oil (soybeans) and shorts gasoline and heating oil (soybean meal and oil) in the futures 

market. On day t the hedger buys crude oil (soybeans) and sells gasoline and heating oil (soybean 

meal and oil) in the spot market and simultaneously cancels the futures positions. This implies that 

the crude oil crack and soybean crush industries keep relatively dynamic portfolios that adjust 

frequently to changing market conditions. Hedged portfolio returns (𝑟𝜋,𝑡)  on day t can be 

expressed as: 

𝑟𝜋,𝑡 = −𝑃𝑠,𝑡
𝑎 + 𝑃𝑠,𝑡

𝑏 + 𝑃𝑠,𝑡
𝑐 + 𝛽𝑎(𝑃𝑓,𝑡

𝑎 − 𝑃𝑓,𝑡−1
𝑎 ) − 𝛽𝑏(𝑃𝑓,𝑡

𝑏 − 𝑃𝑓,𝑡−1
𝑏 ) − 𝛽𝑐(𝑃𝑓,𝑡

𝑐 − 𝑃𝑓,𝑡−1
𝑐 ), (1) 

where 𝛽𝑖 𝑖 = 𝑎, 𝑏, 𝑐 are the futures’ positions in each commodity 𝑖 expressed as the proportion of 

cash positions that are hedged using futures contracts. We express the returns in matrix form as 

𝑟𝜋,𝑡 = 1𝑚
′ 𝑃𝑠,𝑡+𝛽′𝑟𝑓,𝑡, (2) 

where 1𝑚 is a 3 × 1 vector of ones, 𝑃𝑠,𝑡 = [−𝑃𝑠,𝑡
𝑎  𝑃𝑠,𝑡

𝑏  𝑃𝑠,𝑡
𝑐 ]′, 𝛽 = [𝛽𝑎 𝛽𝑏 𝛽𝑐]′, and 𝑟𝑓,𝑡 = [(𝑃𝑓,𝑡

𝑎 −



6 

 

𝑃𝑓,𝑡−1
𝑎 ) – (𝑃𝑓,𝑡

𝑏 − 𝑃𝑓,𝑡−1
𝑏 ) – (𝑃𝑓,𝑡

𝑐 − 𝑃𝑓,𝑡−1
𝑐 )]′. While prices at t-1 are known at the time the decision 

to hedge is taken, prices at t are not. Hence the expectation of expression (2) is: 

𝐸[𝑟𝜋,𝑡] = 1𝑚
′ 𝐸[𝑃𝑠,𝑡]+𝛽′𝐸[𝑃𝑓,𝑡] − 𝛽′𝑃𝑓,𝑡−1 (3) 

where 𝑃𝑓,𝑡 = [𝑃𝑓,𝑡
𝑎  −𝑃𝑓,𝑡

𝑏  −𝑃𝑓,𝑡
𝑐 ]′. The variance of the portfolio returns can be derived as: 

𝑉[𝑟𝜋,𝑡] = 𝐸 [(𝑟𝜋,𝑡 − 𝐸[𝑟𝜋,𝑡])
2
] = 𝐸 [(1𝑚

′ (𝑃𝑠,𝑡 − 𝐸[𝑃𝑠,𝑡]) + 𝛽′(𝑃𝑓,𝑡 − 𝐸[𝑃𝑓,𝑡]))
2

]. (4) 

Following the standard practice in the literature, we assume naïve daily spot price expectations, 

conditional on the information available at day t-1 and an unbiased futures market, which results 

in: 𝐸[𝑃𝑠,𝑡] = 𝑃𝑠,𝑡−1 and 𝐸[𝑃𝑓,𝑡] = 𝑃𝑓,𝑡−1. Hence, the portfolio return variance can be alternatively 

expressed as: 

𝑉[𝑟𝜋,𝑡] = 1𝑚
′ 𝑉[𝑟𝑠,𝑡]1𝑚+𝛽′𝑉[𝑟𝑓,𝑡]𝛽 + 2𝛽′𝐶𝑜𝑣[𝑟𝑓,𝑡, 𝑟𝑠,𝑡]1𝑚

   (5) 

where 𝑟𝑠,𝑡 = 𝑃𝑠,𝑡 − 𝑃𝑠,𝑡−1  and 𝑟𝑓,𝑡 = 𝑃𝑓,𝑡 − 𝑃𝑓,𝑡−1  , 𝑉[𝑟𝑠,𝑡]  and 𝑉[𝑟𝑓,𝑡]  are the 3 × 3  symmetric 

spot and futures return covariance matrices, respectively while 𝐶𝑜𝑣[𝑟𝑓,𝑡, 𝑟𝑠,𝑡] is a non-symmetric 

3 × 3  covariance matrix between spot and futures prices. Notice that since prices are expressed in 

logs, returns are in percent, which makes results robust to any price data transformation. To utilize 

intraday data in this framework, we replace the spot and futures return (co)variance matrices with 

realized (co)variance matrices, and thus 𝑉[𝑟𝜋,𝑡]  becomes the realized variance of the portfolio. 

Realized (co)variances are calculated based on finely sampled intraday returns and details are 

offered in section 2.2. 

The realized minimum variance hedging ratio (RMVHR) is obtained by minimizing expression 

(5), which results in: 

𝛽 = −𝑉[𝑟𝑓,𝑡]
−1

𝐶𝑜𝑣[𝑟𝑓,𝑡, 𝑟𝑠,𝑡]1𝑚. (6) 

In matrix form, expression (6) is: 
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[

𝛽𝑎

𝛽𝑏

𝛽𝑐

] = −

[
 
 
 
𝑅𝑉𝑟𝑓,𝑡

𝑎 𝑟𝑓,𝑡
𝑎 𝑅𝑉

𝑟𝑓,𝑡
𝑎 𝑟𝑓,𝑡

𝑏 𝑅𝑉𝑟𝑓,𝑡
𝑎 𝑟𝑓,𝑡

𝑐

𝑅𝑉
𝑟𝑓,𝑡

𝑎 𝑟𝑓,𝑡
𝑏 𝑅𝑉

𝑟𝑓,𝑡
𝑏 𝑟𝑓,𝑡

𝑏 𝑅𝑉
𝑟𝑓,𝑡
𝑏 𝑟𝑓,𝑡

𝑐

𝑅𝑉𝑟𝑓,𝑡
𝑎 𝑟𝑓,𝑡

𝑐 𝑅𝑉
𝑟𝑓,𝑡

𝑏 𝑟𝑓,𝑡
𝑐 𝑅𝑉𝑟𝑓,𝑡

𝑐 𝑟𝑓,𝑡
𝑐

]
 
 
 
−1

[

𝑅𝐶𝑟𝑓,𝑡
𝑎 𝑟𝑠,𝑡

𝑎 𝑅𝐶𝑟𝑓,𝑡
𝑎 𝑟𝑠,𝑡

𝑏 𝑅𝐶𝑟𝑓,𝑡
𝑎 𝑟𝑠,𝑡

𝑐

𝑅𝐶
𝑟𝑓,𝑡

𝑏 𝑟𝑠,𝑡
𝑎 𝑅𝐶

𝑟𝑓,𝑡
𝑏 𝑟𝑠,𝑡

𝑏 𝑅𝐶
𝑟𝑓,𝑡

𝑏 𝑟𝑠,𝑡
𝑐

𝑅𝐶𝑟𝑓,𝑡
𝑐 𝑟𝑠,𝑡

𝑎 𝑅𝐶𝑟𝑓,𝑡
𝑐 𝑟𝑠,𝑡

𝑏 𝑅𝐶𝑟𝑓,𝑡
𝑐 𝑟𝑠,𝑡

𝑐

] [
1
1
1
], (7) 

where 𝑅𝑉
𝑟𝑓,𝑡

𝑖 𝑟𝑓,𝑡
𝑗  and 𝑅𝐶

𝑟𝑓,𝑡
𝑖 𝑟𝑠,𝑡

𝑗  denote the forecast realized (co)variances over the holding period, 

where i, j = a, b, c. Expression (7) is demanding in terms of the number of forecasts that need to 

be generated. This increases the risk of forecasting errors and low hedging performance. We also 

consider an alternative to (7), which assumes that matrices 𝑉[𝑟𝑓,𝑡] and 𝐶𝑜𝑣[𝑟𝑓,𝑡, 𝑟𝑠,𝑡] are diagonal 

matrices. While this alternative may reduce forecast errors, it ignores the correlation between 

prices across different markets in RMVHR calculation (Markopoulou, 2016). In this simplified 

alternative, we derive the RMVHR for each input and output as follows: 

𝛽𝑖 = −
𝑅𝐶

𝑟𝑓,𝑡
𝑖 𝑟𝑠,𝑡

𝑖

𝑅𝑉
𝑟𝑓,𝑡
𝑖 𝑟𝑓,𝑡

𝑖
 .  (8) 

We evaluate portfolio performance under the complex and simplified alternatives, which allows 

us assessing whether complexity helps in forecasting. In the following subsection we describe how 

we model realized (co)variances.  

2.2. Realized (co)variances  

Realized (co)variance provides a measure of price return(s) (co)variance within a day. For example, 

it informs on the daily joint variability of cash and futures price returns. Let spot and futures prices 

be observed on trading day t = 1,…,T in evenly-spaced intervals of k-minutes, with K being the 

number of k-minute intervals within the day. We define futures price intraday returns as the natural 

log difference of intraday prices in percentage form:  

𝑟
𝑓,𝑡+

𝑘

𝐾

𝑖 = [log(𝑝
𝑓,𝑡+

𝑘

𝐾

𝑖 ) − log (𝑝
𝑓,𝑡+

𝑘−1

𝐾

𝑖 )] × 100.                     (9) 

We define intraday spot price returns 𝑟
𝑠,𝑡+

𝑘

𝐾

𝑖   analogously.3  Realized futures price (co)variances 

(𝑅𝑉𝑓,𝑡) and spot price-futures price realized (co)variances (𝑅𝐶𝑠𝑓,𝑡) on day t are defined as: 

 
3 Since returns are expressed in percent, the coefficients characterizing the production process (𝑎, b and 𝑐) in 𝑃𝑧𝑡 =

[𝑙𝑜𝑔(𝑝𝑧,𝑡
𝑎 ) 𝑙𝑜𝑔(𝑝𝑧,𝑡

𝑏 (𝑏 𝑎⁄ )) 𝑙𝑜𝑔(𝑝𝑧,𝑡
𝑐 (𝑐 𝑎)⁄ )]

′
 become irrelevant.  
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𝑅𝑉𝑓,𝑡
𝑖𝑗

= ∑ (𝑟
𝑓,𝑡+

𝑘

𝐾

𝑖 𝑟
𝑓,𝑡+

𝑘

𝐾

𝑗
) , 𝐾

𝑘=1  and                                             (10) 

𝑅𝐶𝑠𝑓,𝑡
𝑖𝑗

= ∑ (𝑟
𝑓,𝑡+

𝑘

𝐾

𝑖 𝑟
𝑠,𝑡+

𝑘

𝐾

𝑗
)𝐾

𝑘=1                                                                                                (11) 

For ease of notation, we suppress superindices ij in the rest of the article.  

2.3. Forecasting futures risks 

We follow Zhang et al. (2019) and forecast the individual variances and covariances in (7) and 

build the RMVHR afterwards by replacing each individually-generated forecast into (7). We also 

forecast the RMVHR, i.e., 𝛽 = [𝛽𝑎 𝛽𝑏 𝛽𝑐]′ directly through a HAR structure, as opposed to 

forecasting its individual components, a strategy proposed by Andersen et al. (2005) and adopted 

by Harris et al. (2010) and others. To produce the necessary forecasts, we consider an array of 

HAR-based models which we describe below.  

2.3.1. HAR model 

The HAR-RV models the interrelations of volatility aggregated over different frequencies to 

capture persistence and non-normality, both known to be pervasive in volatility modeling (Corsi, 

2009). It mirrors the asymmetric behavior of traders such that short-term (long-term) traders will 

(not) consider the level of long-term (short-term) volatility:  

𝑅𝑉𝑓,𝑡+ℎ
 = 𝛾0 + 𝛾𝑑𝑅𝑉𝑓,𝑡

 + 𝛾𝑤𝑅𝑉𝑓,𝑡
𝑤 + 𝛾𝑚𝑅𝑉𝑓,𝑡

𝑚 + 𝜀𝑓,𝑡+ℎ
  ,  (12) 

where RV is defined in expression (10) and superindices w and m represent the average RV over 

the past 5 and 22 trading days, respectively, with h=1 day being the forecast horizon, which 

corresponds to 1-day holding period. Following Asai & McAleer (2017) and Zhang et al. (2019), 

we use the same structure to model realized covariance (equation 11), which results in the HAR-

RC model:  

𝑅𝐶𝑠𝑓,𝑡+ℎ
 = 𝛼0 + 𝛼𝑑𝑅𝐶𝑠𝑓,𝑡

 + 𝛼𝑤𝑅𝐶𝑠𝑓,𝑡
𝑤 + 𝛼𝑚𝑅𝐶𝑠𝑓,𝑡

𝑚 + 𝜀𝑠𝑓,𝑡+ℎ
 ,  (13) 

We apply models (12) and (13) to forecast each of the elements in the realized variance and 

covariance matrices in expression (7). Forecast values are reassembled into (7) to calculate the 

optimal hedging ratios. As an alternative to using (7), we also generate hedging ratios as in (8) by 

ignoring price covariances across markets. These hedging ratios are then used to evaluate the 

overall portfolio performance.  

Finally, following Markopoulou et al. (2016) and others, we apply the HAR model structure to 

forecasting each hedging ratio directly, calculated as in (8). This results in the HAR-Beta model: 
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𝛽𝑡+ℎ
 = 𝛿0 + 𝛿𝑑𝛽𝑡

 + 𝛿𝑤𝛽𝑡+ℎ
𝑤 + 𝛿𝑚𝛽𝑡+ℎ

𝑚 + 𝜀𝛽,𝑡+ℎ
 .  (14) 

Expression (14) allows for long memory in the hedging ratio, though if the long memory in 

underlying (co)variances was common, the betas may be only weakly persistent (Andersen et al., 

2005). As is common practice, we estimate equations (12)-(14) by OLS.  

2.3.2. Vector HAR 

The Vector HAR (VHAR) model allows forecasting the (2 x 2) covariance matrix between futures 

and spot price returns for each commodity and is especially relevant to single-commodity 

portfolios. We use the matrix logarithmic transformation to ensure psd of the covariance matrix 

(Bauer & Vorkink, 2011 and Qu et al., 2019): 

𝐴𝑡 = 𝑙𝑜𝑔𝑚 [
𝑅𝑉𝑠,𝑡

 𝑅𝐶𝑠𝑓,𝑡
 

𝑅𝐶𝑠𝑓,𝑡
 𝑅𝑉𝑓,𝑡

 ] = [
𝑋𝑠,𝑡

 𝑋𝑠𝑓,𝑡
 

𝑋𝑠𝑓,𝑡
 𝑋𝑓,𝑡

 ], (15) 

where 𝐴𝑡 is a real and symmetric matrix. We take the half vectorization of 𝐴𝑡: 

𝑋𝑡 = 𝑣𝑒𝑐ℎ(𝐴𝑡) = (𝑋𝑠,𝑡, 𝑋𝑠𝑓,𝑡, 𝑋𝑓,𝑡),                                                                                      (16) 

The VHAR-Log model is then expressed as: 

[

𝑋𝑠,𝑡+ℎ

𝑋𝑠𝑓,𝑡+ℎ

 𝑋𝑓,𝑡+ℎ

] = [

𝜑0
 

𝜂0
 

𝜃0
 
] + [

𝜑𝑑,𝑠
 𝜑𝑑,𝑠𝑓

 𝜑𝑑,𝑓
 

𝜂𝑑,𝑠
 𝜂𝑑,𝑠𝑓

 𝜂𝑑,𝑓
 

𝜃𝑑,𝑠
 𝜃𝑑,𝑠𝑓

 𝜃𝑑,𝑓
 

] [

𝑋𝑠,𝑡

𝑋𝑠𝑓,𝑡

𝑋𝑓,𝑡

] 

+[

𝜑𝑤,𝑠
 𝜑𝑤,𝑠𝑓

 𝜑𝑤,𝑓
 

𝜂𝑤,𝑠
 𝜂𝑤,𝑠𝑓

 𝜂𝑤,𝑓
 

𝜃𝑤,𝑠
 𝜃𝑤,𝑠𝑓

 𝜃𝑤,𝑓
 

] [

𝑋𝑠,𝑡
𝑤

𝑋𝑠𝑓,𝑡
𝑤

𝑋𝑓,𝑡
𝑤

] + [

𝜑𝑚,𝑠
 𝜑𝑚,𝑠𝑓

 𝜑𝑚,𝑓
 

𝜂𝑚,𝑠
 𝜂𝑚,𝑠𝑓

 𝜂𝑚,𝑓
 

𝜃𝑚,𝑠
 𝜃𝑚,𝑠𝑓

 𝜃𝑚,𝑓
 

] [

𝑋𝑠,𝑡
𝑚

𝑋𝑠𝑓,𝑡
𝑚

𝑋𝑓,𝑡
𝑚

] + [

𝜀𝑠,𝑡

𝜀𝑠𝑓,𝑡

𝜀𝑓,𝑡

], (17) 

where super indices w and m represent the average 𝑋𝑡 over the past 5 and 22 days, respectively. 

Each of the equations in (17) is estimated by OLS and forecasts for 𝑋𝑠,𝑡+ℎ, 𝑋𝑠𝑓,𝑡+ℎ and 𝑋𝑓,𝑡+ℎ are 

generated for h=1. As opposed to the HAR models (12) and (13), the Vector HAR allows for 

spillovers across spot and futures markets. The forecast realized (co)variances are retrieved by 

applying the inverse of half vectorization on the forecast for 𝑋𝑡+ℎ = (𝑋𝑠,𝑡+ℎ, 𝑋𝑠𝑓,𝑡+ℎ, 𝑋𝑓,𝑡+ℎ) and 

taking the matrix exponential: 

[
𝑅𝑉𝑠,𝑡+ℎ

 𝑅𝐶𝑠𝑓,𝑡+ℎ
 

𝑅𝐶𝑠𝑓,𝑡+ℎ
 𝑅𝑉𝑓,𝑡+ℎ

 ] = 𝑒𝑥𝑝𝑚[𝑖𝑛𝑣𝑣𝑒𝑐ℎ(𝑋𝑡+ℎ)]                                                                  (18) 

As an alternative to the matrix logarithmic transformation, to ensure positive definiteness we also 
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consider Symitsi et al.’s (2018) Cholesky decomposition. See Appendix B for details. 

2.4. Out-of-sample forecasting 

We generate all out-of-sample forecasts (t+h, h=1) based on a rolling window containing a fixed 

number of days equal to ϖ. We estimate the forecasting models over the initial subsample (first ϖ 

observations). These allow forecasting the (co)variance for ϖ +1 and generate the hedging ratios 

according to (7) and (8) using the forecast strategies described above. Based on equations (2) and 

(5), we produce the portfolio returns and their realized variance, respectively for day ϖ +1. Then, 

the subsample is rolled one observation ahead by adding one new observation and omitting the 

oldest one, and the models are re-estimated to produce the next forecast. Hence, we generate T- ϖ-

h portfolio returns and return realized variances over our sample of T days. This allows conducting 

statistical tests on hedging performance (see section 2.4.1.). The process is repeated until the 

sample observations are exhausted. We use ϖ = 800, which roughly corresponds to 3 years and 

allows generating 1267 (2566) out-of-sample hedging performance measures for the crack (crush) 

complex.4 

2.4.1. Hedging effectiveness measure 

The hedging effectiveness (HE) measure compares return variances of a hedged with an unhedged 

portfolio and quantifies the variance reduction achieved through hedging.Let 𝑟𝜋,𝑡+ℎ
𝜛  denote the 

returns obtained within a rolling window ϖ and a hedging horizon h=1 day. An unhedged portfolio 

defines 𝛽 in (2) as 𝛽 = 𝟎′, where 0 is a 3 × 1 vector of zeros and corresponding intraday portfolio 

returns are denoted as 𝑟
𝜋,𝑡+ℎ+

𝑘

𝐾

𝜛,𝑢
 . Under Naïve hedging, 𝛽  is set to 𝛽 = 𝟏′ , with 𝟏  being a 3 × 1  

vector of ones, and corresponding intraday portfolio returns are represented as 𝑟
𝜋,𝑡+ℎ+

𝑘

𝐾

𝜛,𝑛
. The HE 

quantifies the variance reduction of a hedged over an unhedged position. The following expression 

calculates the HE for both the RMVHR and Naïve strategies: 

[

𝐻𝐸𝑛𝑎𝑖𝑣𝑒
ℎ

𝐻𝐸𝑅𝑀𝑉𝐻𝑅,γ
ℎ

] =

[
 
 
 
 
 
 
 
 
(1 −

𝑉[𝑟
𝜋,𝑡+ℎ+

𝑘
𝐾

𝜛,𝑛 ]

𝑉[𝑟
𝜋,𝑡+ℎ+

𝑘
𝐾

𝜛,𝑢 ]

)

(1 −
𝑉[𝑟

𝜋,𝑡+ℎ+
𝑘
𝐾

𝜛 ]

𝑉[𝑟
𝜋,𝑡+ℎ+

𝑘
𝐾

𝜛,𝑢 ]

)

]
 
 
 
 
 
 
 
 

.     (19) 

 
4 In section 4.2. we conduct a robustness check by setting ϖ = 400 and ϖ = 1200. 
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Where subindex γ is the forecasting strategy used, and 𝑉[. ] are the portfolio realized variances on 

day t calculated as in (5).  𝑉 [𝑟
𝜋,𝑡+ℎ+

𝑘

𝐾

𝜛,𝑢 ] , 𝑉 [𝑟
𝜋,𝑡+ℎ+

𝑘

𝐾

𝜛,𝑛 ]  and 𝑉 [𝑟
𝜋,𝑡+ℎ+

𝑘

𝐾

𝜛 ]  are the return variances 

under the unhedged, Naïve and RMVHR strategies, respectively. HE is usually interpreted in 

percentage rather than proportion. The closer the HE is to 100%, the larger is the proportion of 

cash price risks offset by hedging and thus the more effective the hedging strategy. While a HE = 

100% denotes a perfect hedge, where the hedged portfolio experiences zero return variance, HE = 

0% implies that the hedged portfolio has equal amount of risk as the cash position itself. A negative 

HE indicates that the hedged position is riskier than the unhedged one.  

A key question lies on whether HE differences across strategies are statistically significant. To 

derive statistical inference on HE, we follow Wang et al. (2015) and conduct the Diebold and 

Mariano (Diebold & Mariano, 1995) test on portfolio squared returns. Details are offered in 

Appendix C. The DM is a pairwise test that informs us if there is difference between the strategies 

compared. However, its pairwise nature does not allow identifying which among all the strategies 

considered allows for better hedging performance. Therefore, we also conduct the model 

confidence set (MCS) test to further compare among strategies (Hansen et al., 2003; Hansen et al., 

2011). Intuitively, the MCS selects the set of ‘best’ models (𝑀∗) given a collection of candidate 

forecast models (𝑀0), where ‘best’ is defined relative to a loss differential. Details are offered in 

Appendix D.  

3. Data and sampling 

To produce (co)variance forecasts we use futures tick price data retrieved from CME Time and 

Sales dataset for the period from 04/11/2014 to 06/17/2022 (01/02/2009 to 06/17/2022) for the 

crude oil crack (soybean crush) spread. The soybean crush cash prices are provided by CBOT and 

the crude oil crack cash prices are provided by NYMEX and we retrieve them from Barchart. For 

the soybean crush spread we focus on day trading hours (detailed in Appendix E table E.1) which 

concentrate most of the market activity. For the crude oil crack spread, we take the entire day t 

trading session from 5:00 p.m. on day t-1 to 4:00 p.m. (4:15 p.m. prior to 2016, see Appendix E 

table E.2) central time on day t. The September soybean (meal/oil) contracts are excluded from the 

dataset as they are lightly traded (Smith, 2005; Wang et al., 2014).  

  To derive intraday cash prices, we use the nearby futures contract price defined as the closest-

to-expiration contract with the largest trading volume. We rollover to the next-to-expire contract 

when it experiences higher trading volume than the nearby. For each day, we calculate the 

difference between the nearby futures closing price and the spot price, to obtain an estimate of the 

cost of carry for that day. By assuming constancy of the cost of carry within a day, we derive 

intraday spot prices by subtracting the cost of carry from the nearby futures price. Different 

industries may use different contracts to hedge, from the nearby to further-out contracts. We choose 
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an intermediate between contract liquidity, which is typically larger in closer-to-expire contracts, 

and expiration date and hedge cash positions in the first-deferred contract. Similar to the nearby 

contract, we build a first-deferred continuous series by rolling on the same day that the nearby is 

rolled. 

We sample data following the method proposed by Liu et al. (2015), Asai & McAleer (2015), 

Anatolyev & Kobotaev (2018), and Zhang et al. (2019). The method consists of building 5 subgrids 

of 5-minute spaced intervals and is discussed in Appendix F. This method has the merit of cleaning 

microstructure noise, synchronizing price data for (co)variance calculation, and better exploiting 

the information in the high-frequency data, by effectively using use 1-minute sampled data.  

Table 1 presents summary statistics for sample realized (co)variances for futures and spot 

prices in the soybean crush and crude oil crack commodity markets. Figure G.1. in Appendix G 

depicts these (co)variances over time. (Co)variances are directly comparable across markets as we 

work with log price returns, which are equivalent to percent price returns and thus independent 

from the units of measurement. Energy commodities experience larger realized variance than 

agricultural commodities. Average realized variances fluctuate from 4.99 to 24.20 for the oil crack 

commodities and from 1.79 to 3.37 for the soybean crush (table 1). Realized spot-futures 

covariances are also larger for the oil crack (4.27 to 7.89) than the soybean crush (1.62 to 1.98). 

Crack commodity realized (co)variances also show more extreme values than the crush 

commodities. For example, the crude oil spot price realized variance goes as high as 2,487.05, 

while the realized covariance between the gasoline spot and futures prices goes as low as -513.54. 

The soybean meal spot price experiences a maximum realized variance of 399.03 and a minimum 

spot-futures covariance of -32.46. Consistent with the extreme values, standard deviations suggest 

larger dispersion in day-to-day (co)variances in the oil crack than in the soybean crush. Higher 

variability in (co)variances may pose challenges for forecasting accuracy and thus for hedging 

effectiveness. Skewness and kurtosis measures suggest (co)variances are right skewed and 

leptokurtic in each market. Figure G.1. in Appendix G shows that the crack market became 

extremely volatile during 2015-16 coinciding with a price plunge, and the first half of 2020 during 

the covid-19 pandemic. While the crack market experiences extreme spikes, the crush market is 

relatively less spiky.  

4. Results 

We investigate whether there is value in using intraday data to hedge the crack and crush spread 

margins by considering different forecasting approaches summarized in table 2. First, we forecast 

realized variances and covariances in expression (7) separately using the HAR-RV and the HAR-

RC, respectively. We substitute each of these forecasts into (7) to derive the three hedging ratios 

for each portfolio. We denote this approach as Matrix in the following paragraphs. The combined 

forecast errors due to the multiple forecasts required in Matrix can be large, which may lead to low 
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hedging performance. Thus, we also consider single-commodity portfolios. The Univariate 

method uses HAR-RC and HAR-RV to independently forecast the spot-futures realized covariance 

and the futures realized variance in expression (8). We then use (8) to generate the hedging ratios 

for each commodity. The Vector and Cholesky approaches use VHAR-Log and VHAR-Chol, to 

forecast the spot-futures covariance matrix for each commodity. We then substitute values in 

expression (8) to generate the optimal hedging ratio. The Beta approach relies on a HAR-Beta to 

directly forecast the hedging ratio for each commodity (i.e., the left-hand-side of equation (8) 

directly). In summary, Matrix minimizes the overall portfolio variance and thus takes inter-

commodity (co)variances into account. Instead, the Univariate, Vector, Cholesky, and Beta 

approaches derive hedging ratios for each commodity individually. While the latter models allow 

deriving single-commodity portfolio hedging ratios and HE, we also consider their ability to hedge 

the spreads. Specifically, we derive the β vector in (7) by setting the non-diagonal values of the (3 

× 3) right-hand side matrices to 0, and diagonal values to the results derived from each of our 

candidate measures (Univariate, Vector, Cholesky, and Beta).  

4.1 Forecasting hedging ratios 

Table 3 presents the mean and standard deviation of the out-of-sample forecast hedging ratios for 

each commodity across rolling windows. Matrix yields highly unstable hedging ratios, specially 

in the soybean crush market. For example, the average forecast hedging ratio for soybean is 0.486 

with a standard deviation of 28.33. Given the large standard deviations, mean values are not highly 

representative. Univariate and Beta produce hedging ratios that are generally between 0.74 and 

below the Naïve hedging ratio of 1. Cholesky and Vector yield forecast hedging ratios in the range 

between 0.92 and 1.15 and usually display the minimum distance to 1.  

Figures H.1 to H.6 in Appendix H depict the evolution of forecast hedging ratios over time for 

crack and crush spread commodities. To compare across graphs we only present values in the range 

between -0.5 to 2.5, where most of the results lie. We observe that crack market Matrix hedging 

ratios experience large volatility throughout the out-of-sample period, which is consistent with the 

information from table 1. Meanwhile, the other four methods produce relatively stable hedging 

ratios over time. Similarly, Matrix-generated hedging ratios show more volatility compared to 

other methods in the crush spread over the whole sample. To evaluate whether variability in the 

hedging ratio pays off in terms of improving hedging performance, in the following subsection we 

present HE results.  

4.2 Hedging effectiveness and model selection 

We now focus on measuring the HE to identify whether the use of intraday data yield superior 

results relative to the Naïve hedging strategy. As discussed, HE measures the proportional 

reduction in the hedged portfolio’s return variance, relative to the return variance of the unhedged 

portfolio. Table 4 presents the average HE for both the crack and crush spread portfolios (second 
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column). The table also presents the hedging results when each commodity is hedged individually, 

rather than as part of a spread portfolio (columns 3 to 7). Comparison across portfolios suggests 

gasoline as the commodity that is more challenging to hedge. Gasoline HE ratios register the 

smallest values, independently on the hedging strategy used. This may be related to gasoline 

experiencing the largest spot price realized variance (table 1) over the period studied. We will shed 

further light on this issue when discussing the futures-cash price realized correlation. Beta emerges 

as the best strategy in hedging both the crack and crush portfolios. Specifically, Beta reduces the 

crack (crush) portfolio return variance by 70% (61.7%) on average. Beta is also the best strategy 

in 4 of the 6 single-commodity hedging portfolios. It achieves reductions in the portfolio return’s 

variance above 60%, except for gasoline (43.3%) and soybean meal (59%). The Naïve (Univariate) 

strategy slightly surpasses Beta in crude oil (soybean oil) hedging with a HE = 90.5% (69.2%), 

while Univariate performs identically to Beta in soybean. 

Matrix is the worst strategy to hedge the crack portfolio, with a HE of 24.8%, clearly below 

the other strategies’ HE close to 70%. Matrix performs even worse when hedging the crush 

portfolio, with a negative HE. This suggests that combined forecast errors associated to Matrix 

worsen hedging performance. In contrast, the other strategies are capable of reducing the 

portfolio’s variance by about 60-70%. Overall, Beta achieves either the best or second-best 

performance over the other strategies in terms of HE. Consistent with the literature, this suggests 

that both simplicity and intraday information are relevant for hedging purposes. Simplicity because 

Beta forecasts the hedging ratio directly rather than its components, and intraday information 

because Beta relies on the RMVHR based on intraday price data. 

While our HE results rely on a rolling window size of 800 days (section 2.4), we assess the 

robustness of our findings to the change of rolling window size by considering a shorter (400 

observations) and a longer (1,200 observations) horizon. Overall, the results (presented in 

Appendix I) are consistent under different estimation horizons, with Beta being the best model 

overall.  

Figures 1 and 2 present the differences between Beta’s and Naïve’s HE over time measured in 

the left vertical axis and depicted in black dots for the crack and crush spreads, respectively. While 

positive values indicate Beta is superior to Naïve, negative values suggest the opposite. The right 

vertical axis measures the realized correlation coefficient between cash and futures depicted in 

grey lines. The realized correlation 𝜌𝑡 is calculated from the realized variances and covariances 

defined in section 2.2, i.e.,  𝜌𝑡 = 𝑅𝐶𝑠𝑓,𝑡
 

√𝑅𝑉𝑓,𝑡
 𝑅𝑉𝑠,𝑡

 ⁄  . Since the Naïve strategy relies on the 

hypothesis that 𝜌𝑡 = 1, we expect the difference between the two strategies’ HE to experience 

large departures from zero during those periods where 𝜌𝑡 is lower. Consistent with expectations, 

figure 2 suggests that Beta provides on average better results than Naïve in those periods where 𝜌𝑡 

is the lowest in the soybean industry. While both positive and negative HE differences arise during 
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these periods, the latter are less frequent and smaller than positive differences. This is especially 

true for the most recent period, comprising the increased relevance of renewable diesel, which is 

characterized by large drops in 𝜌𝑡 for soybean meal and oil. Notice however, that better on average 

performance comes at the cost of larger variance in performance differences. This pattern is also 

imprinted in figure 1, which sheds light on a couple of interesting patterns. First, gasoline is the 

market with the largest 𝜌𝑡   volatility, which helps understanding the challenges associated to 

hedging gasoline.5 Second, HE differences grow with volatility in 𝜌𝑡. As an example, compare HE 

differences in the crude oil market with the most stable 𝜌𝑡 , with the heating oil and gasoline 

markets with intermediate and large volatility in 𝜌𝑡 , respectively. In short, stable cash-futures 

realized correlations that are close to 1 do not provide much advantage to Beta over Naïve. It is 

when these correlations depart from 1 and are highly unstable that a flexible hedging strategy based 

on intraday data such as Beta can have an edge over Naïve.   

Next, we apply the DM test to statistically compare each hedging strategy against the 

benchmark Naïve hedge. Results are reported in Appendix J and suggest that there is statistically 

significant value in using intraday data to hedge commodities in the agriculture space. However, 

for crack commodities advantages of intraday data are less significant. DM tests suggest that the 

superior performance of Beta over Naïve for the crack and crush spread margins is only statistically 

significant for the crush spread. When it comes to hedging individual commodities, there is always 

at least one intraday data-based strategy whose HE is statistically superior to Naïve’s HE, except 

for crude oil, the commodity whose 𝜌𝑡  experiences less departures from 1 and gasoline, the 

commodity whose 𝜌𝑡 experiences the largest departures from 1 (figure 1).  

 In addition to the DM test, we perform the MCS test to select a superior set of hedging 

strategies for each portfolio. Results along with further details are presented in Appendix J. We 

find that Beta is the only strategy that survives in all the 8 portfolios, with a p-value of 1.000 in 4 

of the 8 portfolios and p-values larger than 0.58 in the other sets. Naïve, in contrast, only survives 

in half of the portfolios considered; crack spread, crude oil, gasoline and soybean. Hence, MCS 

results are consistent with DM results in that intraday-based strategies are more attractive in the 

agriculture than the energy space.  

In table 5 we offer an estimate of the economic value of using the Beta hedging strategy 

relative to the Naïve approach. We concentrate on Beta as this is overall the best intraday data-

based hedging strategy and measure the economic value by assessing the reduction in portfolio 

standard deviation (expressed in USD) achieved through hedging. We calculate a hedging 

effectiveness (HE’*($)) measure equivalent to (19) in terms of standard deviations, as opposed to 

 
5 We acknowledge that our results are influenced by our empirical design, i.e., we hedge using the second-to-expire 

contract and rely on the storage model to derive intraday spot prices. In any case, a low spot-futures price correlation 

in this context implies challenges in predicting the future gasoline price and thus in hedging the commodity. 
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variances. HE’*($) informs on the decline in unhedged returns standard deviation achieved 

through hedging. HE’*($) is expressed in USD per crude oil (soybean) contract equivalent for the 

crack (crush) commodities following the approach detailed in Appendix K. We compare the 

hedging effectiveness between Naïve and Beta as 

 𝐻𝐸𝑡
′∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($) =  𝐻𝐸𝑡

′∗𝐵𝑒𝑡𝑎($) − 𝐻𝐸𝑡
′∗𝑁𝑎𝑖𝑣𝑒($).  (20) 

Results suggest that Beta is more effective at hedging the outputs of the crude oil crack and the 

soybean crush spread industries than the inputs and the whole spread, which is consistent with 

results in tables J.1 and J.2 in Appendix J. In the soybean crush, for example, 𝐻𝐸′𝑡
∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($) 

is $9.88 ($7.12) for soybean meal (soybean oil) and drops to $1.15 ($2.41) for soybean (soybean 

crush spread). In the crude oil crack, 𝐻𝐸𝑡
∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)  is $28.62 and $4.66 for gasoline and 

heating oil, while values for crude oil (crack spread) are -$2.13 ($1.72). Notice that these values 

are not net of transactions costs, which are arguably larger for the Beta than for the Naïve strategy.6 

The amounts in table 5 will easily grow with the period during which the Beta hedging strategy 

is adopted, and the number of contracts held. For example, a firm hedging gasoline (heating oil) 

through the Beta strategy for a month, i.e. 20 trading days, may see a decline in the portfolio’s 

standard deviation on the order of $572.40 ($93.20) per contract. In contrast, the bad performance 

of crude oil hedging would result in an increase in the portfolio’s standard deviation of $42.60 per 

contract. Declines observed in soybean meal (soybean oil) are $197.60 ($142.40), while the decline 

in soybean is $23.00. On a yearly basis (250 trading days), values would jump to $7,155.00, 

$1,165.00, -$532.50, $2,470.00, $1,780.00 and $287.50 for gasoline, heating oil, crude oil, 

soybean meal, soybean oil and soybeans, respectively. Hedging the combined crack and crush 

portfolios with the Beta strategy results in smaller annual declines in portfolio’s return standard 

deviation on the order of $430.00 and $602.50, respectively, relative to the Naïve strategy. These 

values are in terms of one contract but would be more substantial for large companies trading a 

large number of contracts on a daily basis. In summary, table 5 suggests gains from hedging 

individual commodities using intraday data, except for the crude oil, with these gains ranging from 

$287.50 to 7,155.00 per contract and year.  

4.3 Robustness checks 

To assess the robustness of the HAR-Beta model, we examine two alternative models: the ARMA-

RMVHR model, which directly forecasts hedging ratios using an ARMA process, and the DCC-

GARCH model (Engle, 2002), which forecasts the return covariance matrix using daily returns. 

 
6 While the Naïve strategy does not require adjusting the positions in the futures market over time, the Beta does, as 

forecast realized (co)variances change daily and with them the RMVHR. For example, suppose the forecast RMVHR 

for day t and day t+1 are 1 and 1.1, respectively. On day t+1 the hedger will have to take an additional 0.1 futures 

contract relative to day t. Information on transactions costs is, however, not publicly available. 
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The latter allows us to compare our results with conventional models that rely on daily data. Both 

models and results are presented and discussed in Appendix L to preserve space. Overall, the 

exceptional performance of HAR-Beta persists in the face of alternative model structures, 

reaffirming its robustness. Furthermore, results suggest that models relying on intraday data 

perform better than those using daily returns. 

5. Conclusion 

Energy and food price volatility has been increasingly relevant during the last decades, due to 

recurring global supply and demand imbalances and disruptive events such as the 2008 financial 

crisis, the covid-19 pandemic, and the ongoing Russian invasion of Ukraine. Increased price 

volatility has induced greater marketing and operation risks in the energy and food supply chains 

and increased the interest in derivative markets as hedging instruments. The momentum gained by 

the realized (co)variance forecasting models based on intraday data, has recently led to the 

proposal of realized minimum-variance hedging ratios (RMVHR) as an alternative to the widely 

used MVHR based on low frequency data. In this paper we extend this literature by considering, 

for the first time, the value of intraday data for hedging commodities. By doing so, we show how 

high-frequency market data can be useful to perform low frequency tasks. We concentrate on the 

crude oil crack and the soybean crush spread industries. We assess whether complexity pays off 

by considering multiple-commodity portfolios to hedge the crack and crush spreads and single-

commodity portfolios to hedge the commodities in these spreads individually. This results in a 

total of 8 portfolios.  

We make three contributions to the literature. First, we propose a strategy to overcome the 

lack of intraday spot commodity prices that can be paired with the intraday futures prices based on 

the cost of carry model for storable commodities. Second, we consider multi-asset hedging 

portfolios which have not yet been studied using intraday data. This adds substantial complexity 

to hedging by requiring forecasts of covariances across different commodity prices. Third, we 

study a wide array of minimum variance hedging strategies based on intraday data and on 

heterogeneous autoregressive (HAR)-type forecast models to produce the required (co)variances. 

We compare results against the Naïve hedging strategy which has been proven hard to beat (Wu et 

al. 2015). We use the latter as a benchmark as it does not rely on data to forecast future price 

(co)variance. Instead, it assumes that futures and spot prices are perfectly correlated over the 

holding period and thus adopts a hedging ratio equal to 1.  

We use the HAR structure as the forecasting tool given its consistent performance in different 

empirical settings. The hedging strategies considered range from the simplest Beta to the most 

complex Matrix approach. Beta directly forecasts the daily RMVHR for each commodity 

independently of the rest. The Matrix approach is targeted at a multi-commodity portfolio and 

requires considering the inter- and intra-commodity futures and futures-spot covariances to 
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forecast the RMVHRs. Intermediate strategies Vector and Cholesky forecast the spot-futures 

realized covariance matrix for a single-commodity allowing for spillovers across spot and futures 

markets. Univariate forecasts the components of the spot-futures realized covariance matrix 

separately. The performance of these strategies is evaluated through the hedging effectiveness (HE) 

ratio and differences in performance across strategies are tested statistically using the Diebold-

Mariano (DM) and the Model Confidence Set (MCS) tests. Our results show, for the first time, 

how intraday data can be useful to commodity hedgers by assuming they rebalance their portfolios 

daily, a practice that may arguably be more appealing to large than small firms in the commodity 

business. 

We show that intraday data help producing better hedging results relative to the Naïve strategy 

in several instances. Our results further imply that simple is better. In this regard, the crack and 

crush spread portfolios are better hedged through strategies that ignore the price covariance across 

different commodities in the portfolio. In other words, obtaining the optimal hedging ratio for each 

commodity in the portfolio independently of the rest, results in better HE than determining hedging 

ratios simultaneously by allowing for cross-commodity covariances. HE results show there is 

always at least one intraday data-based strategy that outperforms the Naïve except for crude oil. 

We conclude that the simplest intraday data-based strategy, Beta is the best strategy overall. 

Superior performance of intraday data-based strategies is usually statistically significant for 

agricultural commodities, but less so for energy commodities. Our findings align with previous 

research in the stock and exchange rates markets and suggest that intraday data can have a value 

in hedging commodities, particularly in the agricultural space. 

While the use of intraday high-frequency data has been associated to sophisticated high-

frequency traders, our analysis shows that commercial strategies can also benefit from these data. 

By using intraday futures transactions price data and daily cash prices, commodity hedgers may 

achieve better performance than using a Naïve hedging approach. Our estimates place the 

advantage of using intraday data between $7,155.00 and $287.50 per contract and year on average, 

with these values representing the decline in the portfolio’s standard deviation achieved through 

hedging.  

These findings carry significant implications for commercial traders engaged in commodity 

futures markets. In practical terms, these traders can enhance risk management by leveraging 

intraday data and making marginal adjustments to their portfolios in alignment with daily 

forecasted hedging ratios. Additionally, improving hedging outcomes can also enhance welfare by 

increasing individual firms’ utility, improve allocation of commodities over time, as well as 

investment decisions. The availability of high-frequency data enables the recalibration of hedging 

portfolios beyond daily frequencies, potentially leading to more precise and effective hedging 

strategies. It is important to note that while intraday adjustments may incur higher costs compared 

to low-frequency dynamic hedging, the assessment of whether the benefits outweigh these costs 
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remains an open question. Future research focused on refining hedging activities could explore 

this avenue, offering valuable insights for commercial traders and high-frequency traders 

undertaking hedging responsibilities for their clients. Another promising avenue for research in the 

field of hedging involves enhancing forecasting models based on high-frequency data.



20 

 

References 

Alexander, C., Prokopczuk, M., & Sumawong, A. (2013). The (de) merits of minimum-variance 

hedging: Application to the crack spread. Energy Economics, 36, 698–707. 

https://doi.org/10.1016/j.eneco.2012.11.016  

Anatolyev, S., & Kobotaev, N. (2018). Modeling and forecasting realized covariance matrices 

with accounting for leverage. Econometric Reviews, 37(2), 114–139. 

https://doi.org/10.1080/07474938.2015.1035165 

Anderson, R., & Danthine, J. (1980). Hedging and joint production: Theory and illustrations. 

Journal of Finance, 35, 487–498. 

Anderson, R., & Danthine, J. (1981). Cross hedging. Journal of Political Economy, 89, 1182–

1196. 

Andersen, T., Bollerslev, T., Diebold, F., & Wu, J. (G. (2005). A framework for exploring the 

macroeconomic determinants of systematic risk. https://doi.org/10.3386/w11134  

Asai, M., & McAleer, M. (2015). Forecasting co-volatilities via factor models with asymmetry 

and long memory in realized covariance. Journal of Econometrics, 189(2), 251–262. 

https://doi.org/10.1016/j.jeconom.2015.03.020  

Asai, M., & McAleer, M. (2017). The impact of jumps and leverage in forecasting Covolatility. 

Econometric Reviews, 36(6-9), 638–650. https://doi.org/10.1080/07474938.2017.1307326  

Audrino, F., & Corsi, F. (2010). Modeling tick-by-tick realized correlations. Computational 

Statistics & Data Analysis, 54(11), 2372–2382. https://doi.org/10.1016/j.csda.2009.09.033  

Audrino, F., Huang, C., & Okhrin, O. (2018). Flexible har model for realized volatility. Studies 

in Nonlinear Dynamics & Econometrics, 23(3). https://doi.org/10.1515/snde-2017-0080  

Bauer, G. H., & Vorkink, K. (2011). Forecasting multivariate realized stock market volatility. 

Journal of Econometrics, 160(1), 93–101. https://doi.org/10.1016/j.jeconom.2010.03.021  

CME Group (2017). Introduction to Crack Spreads. 

https://www.cmegroup.com/education/articles-and-reports/introduction-to-crack-

spreads.html 

CME Group (2020). Soybean Crush Reference Guide. 

https://www.cmegroup.com/education/files/soybean-crush-reference-guide.pdf 



21 

 

CME Group (2022). CMEG Exchange Volume Report – Monthly. 

https://www.cmegroup.com/daily_bulletin/monthly_volume/Web_Volume_Report_CMEG

.pdf 

Collins, R. A. (2000). The risk management effectiveness of multivariate hedging models in the 

U.S. Soy Complex. Journal of Futures Markets, 20(2), 189–204. 

https://doi.org/10.1002/(sici)1096-9934(200002)20:2<189::aid-fut5>3.0.co;2-v  

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of 

Financial Econometrics, 7(2), 174–196. 

Diebold, F.X. and Mariano, R.S. (1995). Comparing predictive accuracy. Journal of Business 

and Economic Statistics, 13, 253-263. 

Ding, Y., Kambouroudis, D., & McMillan, D. G. (2021). Forecasting realized volatility: Does 

the lasso approach outperform HAR? Journal of International Financial Markets, 

Institutions and Money, 74, 101386. https://doi.org/10.1016/j.intfin.2021.101386  

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized 

autoregressive conditional heteroskedasticity models. Journal of Business and Economic 

Statistics 20: 339-350. https://doi.org/10.1198/073500102288618487. 

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of 

Finance, 34(1), 157–170. https://doi.org/10.1111/j.1540-6261.1979.tb02077.x  

Fackler, P., & McNew, K. (1993). Multiproduct hedging: Theory, estimation, and an application. 

Review of Agricultural Economics, 15, 521–535. 

Garcia, P., Roh, J.-S., & Leuthold, R. M. (1995). Simultaneously determined, time-varying 

hedge ratios in the soybean complex. Applied Economics, 27(12), 1127–1134. 

https://doi.org/10.1080/00036849500000095  

Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 

1545–1578. https://doi.org/10.1111/j.1468-0262.2006.00718.x  

Gouriéroux, C., Jasiak, J., & Sufana, R. (2009). The Wishart autoregressive process of 

multivariate stochastic volatility. Journal of Econometrics, 150(2), 167–181. 

https://doi.org/10.1016/j.jeconom.2008.12.016  

Haigh, M. S., & Holt, M. T. (2002). Crack spread hedging: Accounting for time-varying 

volatility spillovers in the Energy Futures Markets. Journal of Applied Econometrics, 

17(3), 269–289. https://doi.org/10.1002/jae.628  



22 

 

Hansen, P. R., Lunde, A. and Nason, J. M. (2003), ‘Choosing the Best Volatility Models: The 

Model Confidence Set Approach’, Oxford Bulletin of Economics and Statistics 65, 839–

861 

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 

79(2), 453–497. https://doi.org/10.3982/ecta5771  

Harris, R. D., Shen, J., & Stoja, E. (2010). The limits to minimum-variance hedging. Journal of 

Business Finance & Accounting, 37(5-6), 737–761. https://doi.org/10.1111/j.1468-

5957.2009.02170.x  

Kuang, W. (2022). The economic value of high-frequency data in equity-oil hedge. Energy, 239, 

121904. https://doi.org/10.1016/j.energy.2021.121904  

Liu, L. Y., Patton, A. J., & Sheppard, K. (2015). Does anything beat 5-minute RV? A 

comparison of realized measures across multiple asset classes. Journal of Econometrics, 

187(1), 293–311. https://doi.org/10.1016/j.jeconom.2015.02.008 

Liu, P., Vedenov, D., & Power, G. J. (2017). Is hedging the crack spread no longer all it's 

cracked up to be? Energy Economics, 63, 31–40. 

https://doi.org/10.1016/j.eneco.2017.01.020   

Ma, F., Wei, Y., Huang, D., & Chen, Y. (2014). Which is the better forecasting model? A 

comparison between Har-RV and multifractality volatility. Physica A: Statistical 

Mechanics and Its Applications, 405, 171–180. 

https://doi.org/10.1016/j.physa.2014.03.007  

Main, S., Irwin, S. H., Sanders, D. R., & Smith, A. (2018). Financialization and the returns to 

Commodity Investments. Journal of Commodity Markets, 10, 22–28. 

https://doi.org/10.1016/j.jcomm.2018.05.004  

Markopoulou, C. E., Skintzi, V. D., & Refenes, A.-P. N. (2016). Realized hedge ratio: 

Predictability and hedging performance. International Review of Financial Analysis, 45, 

121–133. https://doi.org/10.1016/j.irfa.2016.03.005  

Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and 

autocorrelation consistent covariance matrix. Econometrica, 55(3), 703. 

https://doi.org/10.2307/1913610  

Neufeld, D. (2022, September 7). Inflation: How are rising food and energy prices affecting the 

economy? World Economic Forum. Retrieved October 22, 2022, from 

https://www.weforum.org/agenda/2022/09/inflation-rising-food-energy-prices-economy/  



23 

 

Pindyck, R. S. (2001). The dynamics of commodity spot and futures markets: A Primer. The 

Energy Journal, 22(3). https://doi.org/10.5547/issn0195-6574-ej-vol22-no3-1  

Qu, H., Wang, T., Zhang, Y., & Sun, P. (2019). Dynamic hedging using the realized minimum-

variance hedge ratio approach – examination of the CSI 300 index futures. Pacific-Basin 

Finance Journal, 57, 101048. https://doi.org/10.1016/j.pacfin.2018.08.002  

Qiu, Y., Zhang, X., Xie, T., & Zhao, S. (2019). Versatile har model for realized volatility: A 

Least Square model averaging perspective. Journal of Management Science and 

Engineering, 4(1), 55–73. https://doi.org/10.1016/j.jmse.2019.03.003  

Sévi, B. (2014). Forecasting the volatility of crude oil futures using Intraday Data. European 

Journal of Operational Research, 235(3), 643–659. 

https://doi.org/10.1016/j.ejor.2014.01.019  

Smith, A. (2005). Partially overlapping time series: A new model for volatility dynamics in 

commodity futures. Journal of Applied Econometrics, 20(3), 405–422. 

https://doi.org/10.1002/jae.846  

Symitsi, E., Symeonidis, L., Kourtis, A., & Markellos, R. (2018). Covariance forecasting in 

equity markets. Journal of Banking & Finance, 96, 153–168. 

https://doi.org/10.1016/j.jbankfin.2018.08.013  

Tzang, D., & Leuthold, R. (1990). Hedge ratios under inherent risk reduction in a commodity 

complex. The Journal of Futures Markets, 10, 497–504. 

Wang, X., Garcia, P., and Irwin, S.H. (2014). “The Behavior of Bid-ask Spreads in the 

Electronically-traded Corn Futures Market.” American Journal of Agricultural Economics, 

96(2), pp.557-577. 

Wang, Y., Wu, C., & Yang, L. (2015). Hedging with futures: Does anything beat the naïve 

hedging strategy? Management Science, 61(12), 2870–2889. 

https://doi.org/10.1287/mnsc.2014.2028  

Willems, B., & Morbee, J. (2010). Market completeness: How options affect hedging and 

investments in the electricity sector. Energy Economics, 32(4), 786–795. 

https://doi.org/10.1016/j.eneco.2009.10.019  

Zhang, Y., Wei, Y., & Liu, L. (2019). Improving forecasting performance of Realized covariance 

with extensions of HAR-RCOV Model: Statistical significance and economic value. 

Quantitative Finance, 19(9), 1425–1438. https://doi.org/10.1080/14697688.2019.1585561  



24 

 

Figures 

Figure 1. Differences in hedging effectiveness between Beta and Naïve and realized correlation 

coefficient between cash and futures price returns for the crude oil crack spread commodities  

 

Note: Hedging effectiveness differences between Beta and Naïve in black dots are measured in the left-vertical axis. 

Realized correlation in grey lines is measured in the right vertical axis.  
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Figure 2. Differences in hedging effectiveness between Beta and Naïve and realized correlation 

coefficient between cash and futures price returns for the soybean crush spread commodities  

 

Note: Hedging effectiveness differences between Beta and Naïve in black dots are measured in the left-vertical axis. 

Realized correlation in grey lines is measured in the right vertical axis.  
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Tables 

Table 1. Descriptive statistics of sampled realized (co)variances for futures and spot prices in the 

crude oil crack (top panel) and soybean crush (bottom panel) commodity markets 

 𝑅𝑉𝑠,𝑡
  𝑅𝑉𝑓,𝑡

  𝑅𝐶𝑠𝑓,𝑡
  𝑅𝑉𝑠,𝑡

  𝑅𝑉𝑓,𝑡
  𝑅𝐶𝑠𝑓,𝑡

  𝑅𝑉𝑠,𝑡
  𝑅𝑉𝑓,𝑡

  𝑅𝐶𝑠𝑓,𝑡
  

  Crude oil Gasoline Heating oil 

Mean 11.94 8.41 7.89 24.20 7.16 5.49 7.85 4.99 4.27 

Max 2487.05 1928.58 2013.52 1946.64 556.27 420.12 720.53 362.08 319.78 

Min 0.34 0.24 -16.07 0.42 0.25 -513.54 0.32 0.23 -14.87 

St.Dev 74.25 49.83 50.98 105.08 22.83 23.18 23.29 13.27 10.87 

Skew. 23.05 31.07 32.75 12.85 13.63 2.95 17.39 17.70 16.90 

Kurtosis 666.02 1119.59 1213.86 203.39 254.55 236.56 456.89 411.62 405.13 

  Soybean Soybean meal Soybean oil 

Mean 2.11 1.79 1.62 3.37 2.36 1.98 2.84 2.06 1.76 

Max 187.18 116.59 45.42 399.03 102.76 132.58 256.82 53.76 48.46 

Min 0.12 0.08 -9.03 0.10 0.08 -32.46 0.20 0.13 -17.68 

St.Dev 5.17 3.92 2.38 11.15 4.05 3.86 8.29 2.82 2.69 

Skew. 19.56 18.64 6.70 19.96 13.51 15.33 16.24 7.19 6.48 

Kurtosis 576.72 474.48 81.64 564.77 277.20 440.88 371.87 87.07 80.60 

Note: Table 1 presents summary statistics of realized (co)variances for spot and futures prices for each commodity for 

the sample period. The sample period starts on 04/11/2014 (01/02/2009) and ends on 06/17/2022 (06/17/2022) for the 

crude oil crack (soybean crush) spread commodities.  
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Table 2. Hedging strategies 

 Forecasting model RMVHR 

Matrix HAR-RV & HAR-RC 𝛽 = −𝑉[𝑟𝑓,𝑡]
−1

𝐶𝑜𝑣[𝑟𝑓,𝑡 , 𝑟𝑠,𝑡]1𝑚 

Univariate HAR-RV & HAR-RC 
𝛽𝑖 = −

𝑅𝐶𝑠𝑓,𝑡
𝑖

𝑅𝑉𝑓,𝑡
𝑖

 

Vector HAR-Log 
𝛽𝑖 = −

𝑅𝐶𝑠𝑓,𝑡
𝑖

𝑅𝑉𝑓,𝑡
𝑖

 

Cholesky HAR-Chol 
𝛽𝑖 = −

𝑅𝐶𝑠𝑓,𝑡
𝑖

𝑅𝑉𝑓,𝑡
𝑖

 

Beta HAR-Beta 
𝛽𝑖 = −

𝑅𝐶𝑠𝑓,𝑡
𝑖

𝑅𝑉𝑓,𝑡
𝑖

 

Naïve No No 

Note: 𝛽 is a 3x1 matrix of three hedging ratios, while 𝛽𝑖 is the hedging ratio for commodity i 
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Table 3. Descriptive statistics of forecast hedging ratios 

  Matrix Cholesky Vector Univariate Beta 

Crude oil 1.277 1.047 1.003 0.936 0.987 

 (2.062) (0.132) (0.049) (0.116) (0.051) 

Gasoline 0.735 1.146 0.954 0.748 0.853 

 (3.330) (0.277) (0.120) (0.233) (0.077) 

Heating oil 0.878 0.989 0.942 0.911 0.913 

 (1.544) (0.074) (0.047) (0.090) (0.045) 

Soybean 0.486 1.034 0.987 0.904 0.964 

 (28.33) (0.118) (0.087) (0.188) (0.091) 

Soybean meal 1.17 1.006 0.928 0.854 0.884 

 (16.70) (0.181) (0.125) (0.162) (0.111) 

Soybean oil 1.14 0.983 0.937 0.891 0.896 

  (10.51) (0.135) (0.120) (0.169) (0.146) 

Note: Table 3 shows the mean forecast hedging ratios for each commodity based on different hedging strategies. The 

values reported in parenthesis are standard deviations. The number of observations is 1267 (2566) for the crack (crush) 

complex. 
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Table 4. Hedging effectiveness 

 Matrix Cholesky Vector Univariate Beta Naïve 

Crack 0.248 0.678 0.698 0.692 0.700 0.696 

Crush -23.78 0.589 0.612 0.605 0.617 0.586 

Crude oil - 0.888 0.903 0.890 0.903 0.905 

Gasoline - 0.256 0.399 0.419 0.433 0.382 

Heating oil - 0.657 0.665 0.664 0.667 0.657 

Soybean - 0.622 0.665 0.671 0.671 0.644 

Soybean meal - 0.532 0.578 0.550 0.590 0.527 

Soybean oil - 0.648 0.682 0.692 0.690 0.627 

Note: Table 4 presents the average hedging effectiveness for the crack and crush hedging portfolio and for each 

commodity individually. HE measures the proportional reduction in the hedged portfolio’s return variance, relative to 

the return variance of the unhedged portfolio. Bold values indicate the hedging strategy with the largest HE for each 

hedging scenario.  

  



30 

 

Table 5. Economic value of switching from Naïve to Beta  

 
Crude oil Gasoline Heating oil Crack 

𝐻𝐸′𝑡
∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)/day -2.13 28.62 4.66 1.72 

 𝐻𝐸′𝑡
∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)/month -42.60 572.40 93.20 34.40 

 𝐻𝐸′𝑡
∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)/year -532.50 7155.00 1165.00 430.00 

 
Soybean Soybean meal Soybean oil Crush 

𝐻𝐸𝑡
′∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)/day 1.15 9.88 7.12 2.41 

𝐻𝐸′𝑡
∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)/month 23.00 197.60 142.40 48.20 

 𝐻𝐸𝑡
′∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($)/year 287.50 2470.00 1780.00 602.50 

 Note: The values are expressed in USD/contract/day (month/year), assuming 20 trading days in a month and 250 

trading days in a year. They represent the cash price return standard deviation that is reduced through hedging. For 

the crack (crush) commodities we express the economic values per contract of crude oil (soybeans) equivalent. 

Hence, all prices are expressed in 1,000 barrels of crude oil (5,000 bushels of soybeans) equivalent.  
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Appendix A – Historical prices 

Figure A.1. Historical prices of crude oil crack and soybean crush complex  

 

Note: the figure shows monthly nominal prices of the crude oil crack (right panel) and soybean crush (left panel) 

complex from January 2000 to October 2022 
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Appendix B – Cholesky decomposition 

We decompose the covariance matrix into the product of  𝐻𝑡 and its conjugate transpose 𝐻𝑡𝐻𝑡′ and 

the half vectorization of 𝐻𝑡 gives: 

𝑌𝑡 = 𝑣𝑒𝑐ℎ(𝐻𝑡) = (𝑌𝑠,𝑡, 𝑌𝑠𝑓,𝑡, 𝑌𝑓,𝑡),                                                                                         (B.1) 

where 𝑌𝑠,𝑡, 𝑌𝑠𝑓,𝑡, 𝑌𝑓,𝑡  represent the elements of the Cholesky-transformed realized (co)variance. 

Similar to the VHAR-Log model, the VHAR-Chol model is specified as:  

[

𝑌𝑠,𝑡+ℎ

𝑌𝑠𝑓,𝑡+ℎ

 𝑌𝑓,𝑡+ℎ

] = [

𝜑0
 

𝜂0
 

𝜃0
 
] + [

𝜑𝑑,𝑠
 𝜑𝑑,𝑠𝑓

 𝜑𝑑,𝑓
 

𝜂𝑑,𝑠
 𝜂𝑑,𝑠𝑓

 𝜂𝑑,𝑓
 

𝜃𝑑,𝑠
 𝜃𝑑,𝑠𝑓

 𝜃𝑑,𝑓
 

] [

𝑌𝑠,𝑡

𝑌𝑠𝑓,𝑡

𝑌𝑓,𝑡

] 

+[

𝜑𝑤,𝑠
 𝜑𝑤,𝑠𝑓

 𝜑𝑤,𝑓
 

𝜂𝑤,𝑠
 𝜂𝑤,𝑠𝑓

 𝜂𝑤,𝑓
 

𝜃𝑤,𝑠
 𝜃𝑤,𝑠𝑓

 𝜃𝑤,𝑓
 

] [

𝑌𝑠,𝑡
𝑤

𝑌𝑠𝑓,𝑡
𝑤

𝑌𝑓,𝑡
𝑤

] + [

𝜑𝑚,𝑠
 𝜑𝑚,𝑠𝑓

 𝜑𝑚,𝑓
 

𝜂𝑚,𝑠
 𝜂𝑚,𝑠𝑓

 𝜂𝑚,𝑓
 

𝜃𝑚,𝑠
 𝜃𝑚,𝑠𝑓

 𝜃𝑚,𝑓
 

] [

𝑌𝑠,𝑡
𝑚

𝑌𝑠𝑓,𝑡
𝑚

𝑌𝑓,𝑡
𝑚

] + [

𝜀𝑠,𝑡

𝜀𝑠𝑓,𝑡

𝜀𝑓,𝑡

],  (B.2) 

where superindices w and m represent the average 𝑌𝑡 over the past 5 days and 22 days, 

respectively. The forecast covariance matrix is obtained by taking the invvech of the forecast  

𝑌𝑡+ℎ:  

𝐻𝑡+ℎ = 𝑖𝑛𝑣𝑣𝑒𝑐ℎ(𝑌𝑡+ℎ),                                                                                                        (B.3) 

And multiplying by its conjugate transpose: 

[
𝑅𝑉𝑠,𝑡+ℎ

 𝑅𝐶𝑠𝑓,𝑡+ℎ
 

𝑅𝐶𝑠𝑓,𝑡+ℎ
 𝑅𝑉𝑓,𝑡+ℎ

 ] = 𝐻𝑡+ℎ𝐻𝑡+ℎ′                                                                                      (B.4) 
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Appendix C – Diebold and Mariano test 

The minimum-variance hedging framework aims to minimize the realized variance of the hedging 

portfolio, and a perfect hedge implies that the intraday return variance of the portfolio is zero. 

Given expression (6) in the paper, a perfect forecast of the hedging ratio leads to the perfect hedge. 

Thus, non-zero return variance of the hedged portfolio can be treated as forecasting errors. We 

define the loss differential as the difference between the realized variances of the Naïve hedging 

strategy 𝑔1,𝑡+ℎ
𝜛 = ∑(𝑟

𝜋,𝑡+ℎ+
𝑘

𝐾

𝜛,𝑛 )

2

 and the RMVHR strategy 𝑔𝛽,𝑡+ℎ
𝜛 = ∑(𝑟

𝜋,𝑡+ℎ+
𝑘

𝐾

𝜛 )
2

, which yields 

𝐷1𝛽,𝑡+ℎ
𝜛 = 𝑔1,𝑡+ℎ

𝜛 − 𝑔𝛽,𝑡+ℎ
𝜛 . We generate as many 𝐷1𝛽,𝑡+ℎ

𝜛  observations as total number of rolling 

windows. Next, we conduct the Diebold-Mariano (DM) test on the loss differentials. The null 

hypothesis is 𝐻0: 𝐷1𝛽,𝑡+ℎ
𝜛 = 0, indicating no statistically significant difference between the two 

hedging strategies. The original DM test is not robust to serial correlation which we create by using 

the rolling window approach. To correct for this issue, we conduct the DM test following the 

approach of Giacomini & White (2006). We run a regression of 𝐷1𝛽,𝑡+ℎ
𝜛  on a constant and use 

Newey-West standard errors (Newey and West 1987). If the intercept is significantly different from 

0 then the two strategies have significantly different performances.  
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Appendix D – MCS test 

Intuitively, the MCS selects the set of ‘best’ models (𝑀∗) given a collection of n candidate forecast 

models (𝑀0), where ‘best’ is defined relative to a loss differential. The procedure sequentially 

identifies 𝑀∗ ⊂ 𝑀0 given a confidence interval 𝛼. The equivalence test is applied to the collection 

of models in 𝑀0. Rejection of the null hypothesis implies that the objects in 𝑀0 are not equally 

“good.” Then, an elimination rule is used to remove from 𝑀0 the model with the poorest sample 

performance. This procedure is repeated until the null is accepted and the MCS is defined by a set 

of “surviving” models (𝑀∗). 𝑀0 contains all models derived from each forecasting strategy and 

we sequentially test the null hypothesis of equal prediction accuracy, i.e.  

𝐻0: 𝐸(𝐷𝛽𝛽′,𝑡+ℎ
𝜛 ) = 0 ∀𝛽, 𝛽′ ∈  𝑀0,                                                                                        (D.1) 

where 𝛽  and 𝛽′  include all different forecasts to produce the RMVHR based on the different 

econometric specifications described earlier, including the Naïve approach. Following Hansen et 

al. (2011), two types of statistics are used to test the null hypothesis, the range statistics 𝑇𝑅, and 

max statistics  𝑇𝑚𝑎𝑥.  

According to Hansen et al. (2011), let 

 𝐷𝛽𝛽′,𝑡+ℎ
𝜛 = 𝑔𝛽,𝑡+ℎ

𝜛 − 𝑔𝛽′,𝑡+ℎ
𝜛 , 𝛽, 𝛽′ = 1,… , 𝑛, 𝑡 = 1,… , 𝑇,                       (D.2) 

be the loss differential between model 𝛽  and model 𝛽′  in the model set 𝑀0 , where 𝑔𝛽,𝑡+ℎ
𝜛   and 

𝑔𝛽′,𝑡+ℎ
𝜛  are the loss functions used in the DM test (Appendix C). Then, we define the sample loss 

of model 𝛽 relative to the average losses across n models in the set 𝑀0 as: 

  �̅�𝛽
𝜛 = 𝑛−1 ∑ �̅�𝛽𝛽′

𝜛 
𝛽′ ∈ 𝑀0

,                                                                                            (D.3) 

where �̅�𝛽𝛽′
𝜛 = (𝑇)−1 ∑ 𝐷𝛽𝛽 ′,𝑡+ℎ

𝜛𝑇
𝑡=1  , is the relative sample loss between model 𝛽  and model 𝛽′ . 

The 𝑇𝑅 and   𝑇𝑚𝑎𝑥 statistics are associated to the null hypotheses (D.4) and (D.5), respectively.  

𝐻0,𝛽𝛽′: 𝐸 (𝐷𝛽𝛽 ′,𝑡+ℎ
𝜛 ) = 0, ∀𝛽, 𝛽′ ∈  𝑀0,                                                                             (D.4) 

and 𝐻0,𝛽: 𝐸(�̅�𝛽
𝜛) = 0, ∀𝛽 ∈  𝑀0                                                                                          (D.5) 
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which form the basis to test (D.1). For these two null hypotheses we construct two t-statistics:  

𝑡𝛽𝛽′ =
�̅�

𝛽𝛽′
𝜛

√𝑣𝑎�̂�(�̅�
𝛽𝛽′
𝜛 )

,                                                                                                                (D.6) 

and 𝑡𝛽 =
�̅�𝛽

𝜛

√𝑣𝑎�̂�(�̅�𝛽
𝜛)

,                                                                                                                (D.7) 

respectively, where 𝑣𝑎�̂�(�̅�𝛽𝛽′
𝜛 ) and 𝑣𝑎�̂�(�̅�𝛽

𝜛) represent the estimates of 𝑣𝑎𝑟(�̅�𝛽𝛽′
𝜛 ) and 𝑣𝑎𝑟(�̅�𝛽

𝜛). 

Next, we use the two t-statistics to form the test statistics for the null hypotheses: 

𝑇𝑚𝑎𝑥,𝑀0
= arg max

𝛽 ∈ 𝑀0

𝑡𝛽 , and                                                                                                            (D.8) 

𝑇𝑅,𝑀0
= arg max

𝛽𝛽′ ∈ 𝑀0

|𝑡𝛽𝛽′|.                                                                                                      (D.9) 

As stated in Hansen et al. (2011), the test statistics 𝑇𝑚𝑎𝑥,𝑀0
 and 𝑇𝑅,𝑀0

 have nonstandard asymptotic 

distributions under the null hypothesis, thus we employ a bootstrap procedure. When the null 

hypothesis is rejected at the significance level α%, the model with worst performance is removed 

from the set 𝑀0 with elimination rules associated with 𝑇𝑚𝑎𝑥,𝑀0
 and 𝑇𝑅,𝑀0

, which are defined as: 

𝑒𝑚𝑎𝑥,𝑀0
= arg max

𝛽 ∈ 𝑀0

𝑡𝛽 , and                                                                                                       (D.10) 

𝑒𝑅,𝑀0
= arg max

𝛽 ∈ 𝑀0

sup
𝛽′ ∈ 𝑀0

𝑡𝛽𝛽′                                                                                         (D.11) 

respectively. The elimination process is repeated until the null hypothesis is not rejected and we 

construct the superior model set 𝑀∗ with a (1- α) % confidence band. In our application we 

conduct the bootstrap procedure with 10,000 iterations with block length 2 to correct for possible 

serial correlation in the data.
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Appendix E – Trading hours 

Table E.1. Trading hours of CME soybean/meal/oil futures, 01/02/2009 - 06/17/2022 

Date Opening time Closing time 

01/02/2009 - 04/05-2013 9:30 a.m. 13:15 p.m. 

04/08/2013 - 07/01/2015 8:30 a.m. 13:15 p.m. 

07/02/2015 - 06/17/2022 8:30 a.m. 13:20 p.m. 

 

Table E.2. Trading hours of CME crude oil/gasoline/heating oil futures, 04/11/2014 - 06/17/2022 

Date Opening time Closing time 

04/11/2014 - 04/08-2016 17:00 a.m. 16:15 p.m. 

04/11/2016 - 06/17/2022 17:00 a.m. 16:00 p.m. 
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Appendix F – Sampling 

We sample prices every 5 minutes to filter the microstructure noise from the price data. The 5-

minute sampling results in a loss of an important amount of data. Following Asai & McAleer (2015) 

Anatolyev & Kobotaev (2018) and Zhang et al. (2019) we use an averaging method to compensate 

for this loss. The method consists of building 5 subgrids of 5-minute spaced intervals starting at 

minute 0, 1, 2, 3, and 4 of each day trading session, respectively. For each subgrid, we sample 

prices every 5-minutes. Last day’s closing price is added prior to the first 5-minute interval of each 

subgrid as the overnight price. Whenever a transaction cannot be identified at exactly 5 minutes 

after the previous transaction, the last transaction available from the data is taken. Then, 5-minute 

intraday returns for each subgrid are calculated with the sampled prices. On each day, 5 realized 

(co)variances are produced, one for each subgrid, which we average to form a single realized 

measure. 
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Appendix G – Sample (co)variances over time 

Figure G.1. Sample period realized (co)variances for the crude oil crack (top three panels) and the 

soybean crush spread (top bottom panels) commodity markets 

 

Note: For each commodity, the (co)variances are arranged from top to bottom as: realized cash-futures price 

covariance, realized variance in futures position, and realized variance in spot position. We removed the negative price 

that crude oil registered in April 2020 due to the need to take logarithms on the prices. 
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Appendix H – Forecast hedging ratios for the crack and crush spread outputs 

Figure H.1. Forecast hedging ratio for crude oil 

 

Note: The figure shows forecast hedging ratios for crude oil derived from different hedging strategies. The vertical 

axis is truncated to be in the range [-0.5, 2.5]. 
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Figure H.2. Forecast hedging ratio for gasoline 

 

Note: The figure shows forecast hedging ratios for gasoline derived from different hedging strategies. The vertical 

axis is truncated to be in the range [-0.5, 2.5]. 
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Figure H.3. Forecast hedging ratio for heating oil 

 

Note: The figure shows forecast hedging ratios for heating oil derived from different hedging strategies. The vertical 

axis is truncated to be in the range [-0.5, 2.5]. 
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Figure H.4. Forecast hedging ratio for soybean 

 

Note: The figure shows forecast hedging ratios for soybean derived from different hedging strategies. The vertical 

axis is truncated to be in the range [-0.5, 2.5]. 

 

  



5 

 

Figure H.5. Forecast hedging ratio for soybean oil 

 

Note: The figure shows forecast hedging ratios for soybean oil derived from different hedging strategies. The 

vertical axis is truncated to be in the range [-0.5, 2.5]. 
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Figure H.6. Forecast hedging ratio for soybean meal 

 

Note: The figure shows forecast hedging ratios for soybean meal derived from different hedging strategies. The 

vertical axis is truncated to be in the range [-0.5, 2.5]. 
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Appendix I – Hedging effectiveness robustness check 

Table I.1. Hedging effectiveness with ϖ = 400 

 Matrix Cholesky Vector Univariate Beta Naïve 

Crack 0.444 0.651 0.669 0.661 0.670 0.665 

Crush -1.036 0.617 0.639 0.632 0.643 0.615 

Crude oil - 0.847 0.860 0.851 0.861 0.844 

Gasoline - 0.266 0.384 0.394 0.416 0.366 

Heating oil - 0.631 0.639 0.636 0.640 0.626 

Soybean - 0.651 0.689 0.701 0.696 0.676 

Soybean meal - 0.566 0.604 0.577 0.610 0.553 

Soybean oil - 0.664 0.703 0.707 0.710 0.654 

Note: Table I.1 presents the average hedging effectiveness for the crack and crush hedging portfolio and for each 

commodity individually, with the rolling window size equal to 400 observations. HE measures the proportional 

reduction in the hedged portfolio’s return variance, relative to the return variance of the unhedged portfolio. Bold 

values indicate the hedging strategy with the largest HE for each hedging scenario.  

 

 

Table I.2. Hedging effectiveness with ϖ = 1200 

 Matrix Cholesky Vector Univariate Beta Naïve 

Crack 0.611 0.689 0.712 0.699 0.712 0.709 

Crush -1.114 0.597 0.618 0.612 0.622 0.593 

Crude oil - 0.874 0.910 0.889 0.910 0.913 

Gasoline - 0.250 0.415 0.412 0.443 0.388 

Heating oil - 0.629 0.637 0.635 0.638 0.626 

Soybean - 0.701 0.726 0.726 0.729 0.714 

Soybean meal - 0.545 0.587 0.574 0.601 0.546 

Soybean oil - 0.642 0.676 0.686 0.682 0.610 

Note: Table J.3 presents the average hedging effectiveness for the crack and crush hedging portfolio and for each 

commodity individually, with the rolling window size equal to 1200 observations. HE measures the proportional 

reduction in the hedged portfolio’s return variance, relative to the return variance of the unhedged portfolio. Bold 

values indicate the hedging strategy with the largest HE for each hedging scenario.  
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We find that the 1,200-observation rolling window yields results virtually identical to the 800-

observation window. Beta outperforms in 6 out of 8 portfolios, except for crude oil (Naïve) and 

soybean oil (Univariate). When we use the 400-observation window, the relative performance of 

Beta improves, as it is only beaten in soybean (by the Univariate strategy). All three window sizes’ 

HE values are very close to each. 
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Appendix J – Diebold-Mariano and MCS test results 

Table J.1 reports both the DM test statistics and p-values. The DM test null hypothesis states that 

there is no difference between the performance of the Naïve and the alternative intraday data-based 

hedging strategy. Consistent with results in table 4 in the main paper, DM tests show the poor 

performance of Matrix against the Naïve through very large test statistics. While p-values reject 

the null hypothesis for crack but not crush, after removing 3 significant outliers from crush Matrix 

forecasts, Matrix’s HE remains lower than Naïve’s HE and the null hypothesis is rejected. 7 This 

allows concluding that Naïve outperforms Matrix. A total of 4 out of 8 DM test statistics 

corresponding to the Beta-Naïve comparison show significance. These are the DM tests for the 

crush spread, heating oil, soybean meal and soybean oil. In all these cases, Beta has larger HE than 

Naïve, which allows concluding that Beta outperforms Naïve in half of the portfolios. In the 

remaining half, Beta performs equally well as Naïve. A total of 5 out of 8 DM statistics are 

significant when comparing Vector and Naïve, and all involve higher HE for Vector. Specifically, 

Vector outperforms Naïve in the crush spread and the three crush commodities, as well as heating 

oil. In the remaining portfolios, Vector’s performance is not statistically different from Naïve. The 

Cholesky approach does not have any significant result. The Univariate strategy outperforms Naïve 

in soybean oil, at the 10% significance level underperforms Naïve in the crude oil, and performs 

equally well in the rest. In summary, hedging strategies based on intraday data that forecast the 

spot-futures covariance matrix either explicitly (Vector) or implicitly (Beta) and ignore spillovers 

across different commodities are either superior or equal to the Naïve hedging ratio, with Vector 

and Beta beating Naïve when hedging the crush spread margins. When it comes to hedging 

individual commodities, there is always at least one intraday data-based strategy that outperforms 

the Naïve, except for crude oil, the commodity whose 𝜌𝑡 experiences less departures from 1 and 

gasoline, the commodity whose 𝜌𝑡 experiences the largest departures from 1 (figure 4). Soybean 

oil benefits the most from intraday data-based hedging methods with 3 out of the 4 intraday 

strategies outperforming the Naïve at the 1% significance level, followed by heating oil and 

soybean meal (2 out of 4) and then soybean (1 out of 4). This suggests that there is statistically 

significant value in using intraday data to hedge commodities, especially in the agriculture space. 

For crack commodities, however, advantages of intraday data are rarely significant.  

 In addition to the DM test, we perform the MCS test to select a superior set of hedging 

strategies for each portfolio. The MCS test is performed with 10,000 bootstrap iterations and a 

block length of 2. Table J.2 shows the p-values of the MCS test for the spread and individual 

commodity portfolios. The p-value shows the significance level at which the strategy is excluded 

from the superior set. We find that Beta is the only strategy that survives in all the 8 portfolios, 

with a p-value of 1.000 in 4 of the 8 portfolios and p-values larger than 0.586 in the other sets. 

Vector survives 6 out of 8 portfolios, excluding heating oil and soybean meal. Univariate and 

 
7 Results are available from the authors upon request. 
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Cholesky are excluded three times from the MCS. The Naïve is the worst performer and is excluded 

from four portfolios: crush, heating oil, soybean meal and soybean oil. Matrix is excluded from 

both spread portfolios.  

The MCS test suggests that heating oil should be hedged using intraday data and the hedging 

ratio should be based on the Beta strategy. The crush spread can be hedged by either Beta or Vector 

and soybean meal with Beta or Cholesky. Soybean oil can be hedged through Beta, Univariate or 

Vector. The use of intraday data and the complexity associated to doing so does not seem to make 

a difference in the case of crude oil, gasoline, and soybean hedging according to the MCS test. 

Crude oil and gasoline are the most liquid futures markets of the crack spread, while soybean is 

the most liquid market of the crush spread. All strategies except Matrix survive the MCS in the 

crack spread, the most highly traded spread in the commodity space. Similar to the DM test, the 

MCS suggests agricultural commodities as the group possibly benefiting the most from intraday 

data-based hedging. Notice that Naïve is excluded more often from the crush than the crack 

compound. 
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Table J.1. DM test 

  Matrix Cholesky Vector Univariate Beta 

Crack 1.283e+2 3.030 2.237 2.558 1.027 

  (4.838e-3)*** (0.244) (0.563) (0.621) (0.484) 

Crush 6.852e+4 3.137e-3 4.964e-3 8.378e-3 6.036e-3 

 (0.290) (0.710) (2.371e-4)*** (0.171) (5.333e-4)*** 

Crude oil - 0.270 0.012 0.013 0.011 

 - (0.163) (0.931) (0.062)* (0.952) 

Gasoline - 9.494 5.155 1.855 0.959 

 - (0.277) (0.380) (0.267) (0.492) 

Heating oil - 3.013e-4 2.384e-4 9.780e-4 6.006e-4 

 - (0.156) (4.087e-5)*** (0.904) (1.663e-3)*** 

Soybean - 6.638d-5 6.675e-5 4.548e-4 1.375e-4 

 - (0.100) (4.600e-2) *** (0.617) (0.248) 

Soybean meal - 5.402e-4 4.914e-4 9.657e-4 5.031e-4 

 - (0.982) (6.380e-3) *** (0.694) (5.570e-4) *** 

Soybean oil - 4.799e-4 1.168e-3 1.801e-3 1.304e-3 

 - (0.159) (9.948e-6) *** (2.477e-4) *** (9.568e-7) *** 

Note: Table J.1. reports the DM test statistics when comparing advanced hedging strategies to the Naïve strategy when 

hedging the crack and crush spread as well as hedging single commodities. The values presented in the parenthesis 

are p-values of the test. *, **, and *** indicate 10%, 5%, and 1% significance level respectively.  
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Table J.2. MCS test 

 Matrix Cholesky Vector Univariate Beta Naïve 

Crack 0.022** 0.403 0.626 0.586 0.586 1.000 

Crush 0.085* 0.027** 0.708 0.014** 1.000 0.085* 

Crude oil - 0.307 1.000 0.307 0.992 0.992 

Gasoline - 0.255 0.738 0.738 0.631 1.000 

Heating oil - 0.067* 0.065* 0.005*** 1.000 0.060* 

Soybean - 0.415 1.000 0.415 0.590 0.382 

Soybean meal - 0.124 0.064* 0.042** 1.000 0.038** 

Soybean oil - 0.002*** 0.380 0.972 1.000 0.001*** 

Note: Table J.2 shows the p-values obtained from the MCS test with 10,000 bootstraps and a block length of 2. *, 

**, and *** indicate that the model is excluded from the MCS at 10%, 5%, and 1% significance levels, respectively.  
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Appendix K – Economic Value 

In table 5 in the article we offer an estimate of the economic value of using the Beta hedging 

strategy relative to the Naïve approach. We concentrate on Beta as this is overall the best intraday 

data-based hedging strategy and measure the economic value in USD. To obtain the dollar values, 

we calculate a hedging effectiveness (HE*) measure equivalent to (19) in the main paper in terms 

of standard deviations, as opposed to variances. The latter informs on the percent by which the 

standard deviation of the unhedged portfolio returns (𝑠𝑡𝑑 (𝑟𝜋,𝑡
𝑢 (%)))  can be reduced through 

hedging as follows: 

 𝐻𝐸𝑡
∗(%) = (𝑠𝑡𝑑 (𝑟𝜋,𝑡

𝑢 (%)) − 𝑠𝑡𝑑(𝑟𝜋,𝑡
 (%))) 𝑠𝑡𝑑 (𝑟𝜋,𝑡

𝑢 (%))⁄ . (K.1)  

where 𝑠𝑡𝑑 ( ) is calculated by taking the square root of the realized portfolio variance (expression 

(5) in the main article). 

Alternatively, (K.1) can be expressed as: 

𝐻𝐸𝑡
∗(%)𝑠𝑡𝑑 (𝑟𝜋,𝑡

𝑢 (%)) = (𝑠𝑡𝑑 (𝑟𝜋,𝑡
𝑢 (%)) − 𝑠𝑡𝑑(𝑟𝜋,𝑡

 (%))).   (K.2)  

Let’s focus on the left-hand side of (K.2) which informs on the absolute decline in standard 

deviation as a result of hedging. However, since the standard deviation is expressed in percent, this 

measure is not directly useful for our purpose. We want to express the standard deviation in USD 

rather than in percent, which results in our economic measure. For simplicity, assume we have a 

single-commodity portfolio. The unhedged portfolio returns only depend on percent spot price 

returns, which we measure as 𝑟𝜋,𝑡
𝑢 (%) = 100 log

𝑝𝑠,𝑡
𝑖

𝑝𝑠,𝑡−1
𝑖 ≈ 100

𝑝𝑠,𝑡
𝑖 −𝑝𝑠,𝑡−1

𝑖

𝑝𝑠,𝑡−1
𝑖 . As discussed in section 2.1. 

in the main paper, superindex 𝑖 = 𝑎, 𝑏, 𝑐  denotes the input (𝑎 ) or output (𝑏, 𝑐 ). Since 𝑝𝑠,𝑡−1
𝑖   is 

known, the unhedged returns standard deviation can be expressed as 𝑠𝑡𝑑 (𝑟𝜋,𝑡
𝑢 (%)) ≈

100

𝑝𝑠,𝑡−1
𝑖 𝑠𝑡𝑑(𝑝𝑠,𝑡

𝑖 ) . We transform 𝑠𝑡𝑑 (𝑟𝜋,𝑡
𝑢 (%))  into 𝑠𝑡𝑑 (𝑟𝜋,𝑡

𝑢′
($))  in USD per crude oil (soybean) 

futures contract equivalent for the crack (crush) commodities in expression (K.3)  

𝑠𝑡𝑑 (𝑟𝜋,𝑡
𝑢′ ($)) ≈  𝑠𝑡𝑑 (𝑟𝜋,𝑡

𝑢 (%))
𝑝𝑠,𝑡−1

𝑖

100

𝑖

𝑎
𝑞 ≈ 𝑠𝑡𝑑 (

𝑖

𝑎
𝑝𝑠,𝑡

𝑖 ) 𝑞,    (K.3) 

where 𝑎, 𝑏, 𝑐 are the technical coefficients representing the crude oil crack or the soybean crush 

production functions, and 𝑞 measures the number of barrels (bushels) of crude oil (soybeans) per 

crude oil (soybeans) futures contract. By multiplying 𝑝𝑠,𝑡
𝑖  by 

𝑖

𝑎
, we transform the initial price 𝑝𝑠,𝑡−1

𝑖  
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in crude oil / soybean equivalent price. Hence, we now can use the idea in (K.2) to we express the 

reduced variability of cash price returns as a result of hedging in USD as:  

𝐻𝐸𝑡
′∗($) = 𝐻𝐸𝑡

∗(%)𝑠𝑡𝑑 (𝑟𝜋,𝑡
𝑢′

($))𝑞 = 𝐻𝐸𝑡
∗(%)𝑠𝑡𝑑 (

𝑖

𝑎
𝑝𝑠,𝑡

𝑖 ) 𝑞. (K.4) 

For crude oil (gasoline) [heating oil] q=1,000 barrels of crude oil equivalent and i/a = 1 (2/3) and 

[1/3]. Similarly, for soybeans (soybean meal) [soybean oil] q=5,000 bushels of soybeans and i/a = 

1 (11/10) [9/10]. We compare the hedging effectiveness between Naïve and Beta as 

 𝐻𝐸𝑡
′∗𝐵𝑒𝑡𝑎−𝑁𝑎𝑖𝑣𝑒($) =  𝐻𝐸𝑡

′∗𝐵𝑒𝑡𝑎($) − 𝐻𝐸𝑡
′∗𝑁𝑎𝑖𝑣𝑒($).  (K.5) 

For the spread portfolios we follow the same process based on the price 𝑝𝑠,𝑡  calculated as 

𝑝𝑠,𝑡 = −𝑝𝑠,𝑡
𝑎 +

𝑏

𝑎
𝑝𝑠,𝑡

𝑏 +
𝑐

𝑎
𝑝𝑠,𝑡

𝑐 . 
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Appendix L – Alternative models 

We assess the time-series properties of the optimal hedging ratios derived using methods described 

in Table 2 and find they display significant autocorrelation and are stationary.8 ARMA models are 

widely used in modeling serial correlation which we consider to assess the robustness of our results 

to other econometric specifications unrelated to HAR. Specifically, we use the following ARMA-

RMVHR (p, q) model, where the realized hedging ratio is forecasted using the ARMA structure: 

𝛽𝑡 = 𝜀𝑡 + ∑ 𝜑𝑖
𝑝
𝑖=1 𝛽𝑡−𝑖 + ∑ 𝜃𝑗

𝑞
𝑗=1 𝜀𝑡−𝑗                                                                                         (L.1) 

For model parsimony, we define (p, q) = (1, 1). 

Next, we explore a GARCH model that leverages daily frequency returns to forecast the daily 

conditional covariance matrix and calculate the forecasted hedging ratio. Specifically, we examine 

the bivariate DCC-GARCH model, a well-known GARCH variant that allows us estimating time-

varying MVHRs. The conditional means for the two return series of the DCC-GARCH are 

represented as: 

𝑟𝑖,𝑡
∗ = µ𝑖,𝑡 + 𝜀𝑖,𝑡 + 𝜃 𝜀𝑖,𝑡−1,                                                                                                                          (L.2) 

𝜀𝑖,𝑡 = ℎ
𝑖,𝑡

1

2 𝜂𝑖,𝑡                                                                                                                                      (L.3) 

where,  𝑟𝑖,𝑡
∗  is the log daily price difference of the spot (i=s) or the futures (i=f) price at time t, 

𝜂𝑖,𝑡 ~𝑖. 𝑖. 𝑑. 𝑁(0,1), and ℎ𝑖,𝑡
  is the conditional variance.  The equation for the conditional variance 

of a DCC-GARCH (1,1) is as follows: 

 ℎ𝑖,𝑡
 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡

2 + 𝛽𝑖ℎ𝑖,𝑡−1
                                                                                                       (L.4) 

DCC-GARCH allows the conditional correlation matrix 𝑅𝑡
  between spot and futures returns to 

vary independently from their covariance matrix 𝐻𝑡
 : 

𝐻𝑡
 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                                                                                               (L.5) 

where 𝐷𝑡  is the diagonal matrix of the conditional standard deviations (ℎ
𝑖,𝑡

1

2 )  at time t and  𝑅𝑡 

follows the dynamic process specified in Engle (2002). 

Table L. 1 compares the Hedging Effectiveness (HEs) of the ARMA and GARCH models with 

 
8 Results are available upon request. 
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HAR-Beta and the Naïve strategy. The Beta approach demonstrates superior performance in 7 out 

of 8 hedging scenarios, uncontested by the two alternative models except in the soybean market, 

with ARMA’s HE slightly higher than that of Beta’s. When comparing with the Naïve strategy, the 

ARMA model demonstrates superior performance in 4 out of 8 cases, whereas the GARCH model 

outperforms in 6 out of 8 cases. Table L. 2 presents the results of the Model Confidence Set (MCS) 

test, including the two alternative models and the HAR-type models. The MCS test reveals that 

Beta remains effective in all hedging scenarios. Additionally, with the inclusion of the new models, 

the Cholesky approach is favored in one more case, and the Univariate and Naïve strategy are 

deemed optimal in two more scenarios, at a 10% confidence level. Both the ARMA and GARCH 

models are excluded from the set the largest number of times (three) at a 10% significance level 

and 1% significance level, respectively. Hence, none of these three models exhibit a superior 

performance advantage over the others significantly, which is consistent with Wang et al. (2015). 

While ARMA shows larger HE than Beta for soybean (table L.1), ARMA and Beta models exhibit 

identical MCS p-values when hedging soybean, implying their performances are not statistically 

different. Overall, the exceptional performance of HAR-Beta persists in the face of alternative 

model structures, reaffirming its robustness. Furthermore, our results suggest that models that rely 

on intraday high-frequency data generally outperform the model based on daily frequency data. 
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Table L. 1. Hedging effectiveness with alternative models 

  Beta Naïve ARMA GARCH 

Crack 0.700 0.696 0.681 0.690 

Crush 0.617 0.586 0.606 0.594 

Crude oil 0.903 0.905 0.886 0.896 

Gasoline 0.433 0.382 0.358 0.398 

Heating oil 0.667 0.657 0.617 0.658 

Soybean 0.671 0.644 0.675 0.664 

Soybean meal 0.590 0.527 0.557 0.552 

Soybean oil 0.690 0.627 0.658 0.632 

Note: Table L.1 presents the average hedging effectiveness of the Beta approach, Naïve strategy, the ARMA-RMVHR 

model, and DCC-GARCH model for the crack and crush hedging portfolio and for each commodity individually.  

 

Table L. 2. MCS test with alternative models 

  Matrix Chol. Vector Univ. Beta Naïve ARMA GARCH 

Crack 0.026** 0.614 0.659 0.626 0.657 1.000 0.659 0.626 

Crush 0.089* 0.225 0.712 0.013** 1.000 0.181 0.035** 0.225 

Crude oil - 0.353 1.000 0.353 0.991 0.991 0.218 0.225 

Gasoline - 0.418 0.690 0.690 0.642 0.642 1.000 0.418 

Heating oil - 0.113 0.060* 0.154 1.000 0.154 0.065* 0.000*** 

Soybean - 0.434 1.000 0.434 0.912 0.475 0.912 0.862 

Soybean meal - 0.072* 0.062* 0.205 1.000 0.072* 0.205 0.006*** 

Soybean oil - 0.027** 0.383 0.975 1.000 0.027** 0.038** 0.038** 

Note: Table L.2 shows the p-values obtained from the extended MCS test when adding ARMA-RMVHR and DCC-

GARCH with 10,000 bootstraps and a block length of 2. *, **, and *** indicate that the model is excluded from the 

MCS at 10%, 5%, and 1% significance levels, respectively.  
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