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Abstract

This paper investigates how the increased use of corn and soybean oil as motor fuel feed-
stock, driven by biofuel mandates, has affected price volatility. I model and study two
different volatility drivers affected by the mandates: market integration and changes
in the demand curve. Using the implementation of the Renewable Fuel Standard and
the Renewable Diesel boom as key events, I measure the effects of these two drivers
on implied volatilities using causal inference methods and a novel set of synthetic con-
trols. Results indicate a 19% rise in corn volatility and a 18% increase in soybean oil
volatility, on average, after the implementation and expansion of biofuel mandates. In
the case of corn, the higher shares of corn used for fuel and a high volatility regime in
energy markets are the drivers of volatility changes. For soybean oil, the increase is
mostly driven by changes in marginal demand elasticity, as growing domestic demand
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1 Introduction

Two of the most significant developments impacting agricultural markets in recent years
have been the implementation of the Renewable Fuel Standard (RFS), passed as the RFS1
in 2005 and starting in 2006, and the Renewable Diesel boom (RD boom), in 2021. These
events substantially increased the use of corn and soybean oil as inputs for motor fuel in the
US. In the 2023/24 crop year, around 40% of corn and 50% of soybean oil produced in the
US became fuel (USDA, 2024). This dramatic change in demand led to higher commodity
prices (Carter, Rausser, and Smith (2017)), higher land allocated for grains and oilseeds
(Hausman, Aufthammer, and Berck (2012)), increased market integration between agricul-
tural and energy markets (Serra and Zilberman| (2013), Trujillo-Barrera, Mallory, and Garcia
(2012)), with questionable results regarding reduction in greenhouse gases emissions (Lark
et al. (2022)).

But what are the impacts on commodity price volatility? While previous research has
examined how geopolitical risks (Goyal, Mensah, and Steinbach (2024)) and export bans
(Adjemian, Petroff, and Robe (2022)) affect commodity prices and volatilities, little is known
about how biofuel mandates have affected the volatility of agricultural commodities prices.
This paper addresses that gap.

A key measure of risk is implied volatility (IVols). IVols are forward looking volatilities
priced in the market through options contracts (Egelkraut, Garcia, and Sherrick (2007)). In
this paper, I answer two questions: By how much did biofuel mandates and the growing use of
corn and soybean oil for motor fuel permanently affect implied volatility? And what are the
mechanisms behind these changes? These questions are highly relevant because increased
volatility leads to higher crop insurance premiums (Sherrick| (2015)), higher operational
costs due to higher trading margin requirements (Fishe et al. (1990)), complications to crop
marketing, by increasing price risk, and a general decline in investment within the sector
(Dixit and Pindyck (1994)).

I propose a simple stylized model to analyze demand-side factors after the implementation



and expansion of biofuel mandates. The focus is on how changes in demand shock variance
and the slope of the demand curve influence price risk. Two key events are central to
this framework. First, the implementation of the Renewable Fuel Standard (RFS) in 2006
increased the linkage between agricultural and energy markets, amplifying the impact of
energy market demand shocks on corn and soybean oil demand. Second, the renewable
diesel (RD) "boom” in 2021 increased domestic demand for soybean oil, as RD production,
in the US, increased by over 500% (EIA| (2024)), reduced exports of soybean oil to zero and
altered the marginal demand for the product. These events illustrate how higher volatility
can arise through two mechanisms: market integration (by introducing additional demand
shocks with higher variance from other markets, like energy) and international trade.

The data covers monthly short-dated at-the-money (ATM) European call options ”im-
plied volatility” recovered from the Black-Scholes model for corn, soybean oil, sugar, live
cattle, coffee and WTT crude oil from 1996 to 2024. I divide these markets into 2 groups:
biofuel commodities (corn and soybean oil) and other (exogenous) agricultural commodities
(coffee, sugar and live cattle).

I estimate the effects of the Renewable Fuel Standard (RFS) implementation and the
Renewable Diesel (RD) boom, marked by a sharp reduction in exports,on agricultural implied
volatilities, drawing on the insights of |Adjemian et al. (2017). To strengthen identification,
[ also employ a synthetic control approach following Abadie and Gardeazabal (2003), using
exogenous agricultural commodities such as coffee, sugar, and live cattle as controls. This
strategy provides a range of informative coefficient estimates. My analysis captures both the
direct impact of biofuel policies and the role of shifting energy market volatility regimes before
and after policy implementation. Conceptually, the effects operate through two distinct
mechanisms: increased market integration following the RF'S and trade reallocation pressures
associated with the RD boom.

This work contributes to the literature in three ways. First, this is the first study to

causally measure how these mandates affect agricultural price volatility. Documenting the



effects of such policies on price volatility is of utmost relevance for policymakers.

Second, the methodology has two novel approaches. Previous research in agricultural
commodity market volatility has focused on modeling historical volatility using GARCH
and VECM models to capture volatility spillovers (Serra et al. (2010)). This purely time-
series approach can yield inconclusive results regarding the impact of biofuel policies and
often fails to offer meaningful economic insights into price behavior patterns (Abbott (2012);
Headey and Fan (2008)). By using causal inference methods and synthetic controls, instead
of GARCH and VECM, and implied volatility, instead of historical volatility, I offer a new
angle to the literature.

Third, this approach allows me to decompose the effects of market integration and in-
ternational trade on price volatility. I study how different energy market volatility regimes
can affect agricultural markets. This is important because it allows policymakers, market
agents, and traders to understand and consider the channels through which price volatility
can change.

The results indicate that corn volatility increased by 19% following the implementation
of the RFS. This increase was primarily driven by the increase in the share of corn allocated
for fuel production after the RFS. Soybean oil volatility rose by 18%, mainly by the drastic
reduction in exports post RD boom. The main mechanism driving this increase in soybean oil
implied volatility was a change in the marginal demand, from exports to domestic markets,
as exports dropped to zero, which led to the supply curve intersecting the demand curve
on a steeper portion. These results follow the theoretical predictions that biofuel policies
increase overall price volatility for agricultural inputs.

In addition, I find that agricultural commodities implied volatility sensitivity to energy
market shocks increase by fourfold for corn and threefold for soybean oil post the implemen-
tation of the RF'S. This implies that energy market volatility can both increase and dampen
volatility in agricultural commodities. This is in line with the literature that finds increased

spillovers from energy to agricultural markets. In combination, these results highlights the



mechanisms through which agricultural commodities volatilities changed post implementa-
tion of biofuel mandates.

The remainder of this paper is organized as follows: Section 2 provides the institutional
background on the biofuel policies and key events. Section 3 presents the stylized model.
Section 4 outlines the data , while Section 5 details the empirical approach. Results are

discussed in Section 6, and Section 7 concludes.

2 Institutional Background

In this section, I discuss the main events evaluated in this paper. The first event is the
implementation of the Renewable Fuel Standard (RFS). The second event studied is the

Renewable Diesel (RD) Boom.

2.1 Renewable Fuel Standard

The Renewable Fuel Standard (RFS) is a federal policy that aims at a reduction of green
house gases (GHG) and mandates increased use of biofuels in the transportation sector in
the US (U.S. Environmental Protection Agency| (2024)). Implemented first in 2006, with a
significant expansion in 2008 (RFS2), the policy requires minimum levels of biofuel blending
in the diesel and gasoline pool. By setting yearly and increasing blending targets for ethanol
and biodiesel, the program was the main driver behind the increased demand for these
renewable fuels (CARB (2024)).

At the end of each year, the program requires fuel refineries and importers, called Ob-
ligated Parties, that produce or import gasoline and diesel to comply with the mandate
by submitting Renewable Identification Numbers (RINs). These RINs are generated every
time a biofuel gets blended with a fossil fuel. In other words, the mandate requires that the
market buy and blend enough biofuels to generate sufficient credits for the policy.

The implementation of the RFS led to a significant increase in agricultural inputs usage



for fuel production, as shown in Figure [Il Corn use for fuel purposes increased from 10.5
billion bushels in 2006/07, the policy implementation year, to 12.5 billion bushels by 2010/11,
when corn-ethanol hit the ”blend-wall” E Today, corn use for fuel purposes represents around
40% of total corn disappearance in the US.

Soybean oil represented a second agricultural input that was impacted, serving as feed-
stock for Fatty Acid Methyl Esters (FAME) biodiesel production during this period. How-
ever, the increase in demand occurred on a much smaller scale than other inputs. Throughout
the same time from 2006,/07 to 2010/11, soybean oil consumption for fuel purposes remained
relatively stable at 2.7 billion pounds, accounting for approximately 15% of total US soybean

oil consumption.
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Figure 1: Changes in the share of corn and soybean oil use for fuel production
Source: WASDE/ USDA, 2025

Note: The figure shows the evolution of the shares of soybean oil and corn use for fuel production. The
shaded area represents the RFS implementation period until it hit the ethanol ”blend-wall”. The vertical

red line is the RFS implementation.

Overall, the effects of the RFS were significant for both agricultural inputs, corn and

soybean oil. However, the share of corn for fuel production was significantly higher compared

'The ’blend wall’ refers to the maximum percentage of ethanol that can be blended into conventional
gasoline, which is set at 10% in the United States. By 2010/11, the mandated volume under the Renewable
Fuel Standard (RFS) had reached this 10% blend threshold. Consequently, from this point forward, ethanol
demand growth became directly tied to increases in overall gasoline consumption, since the blending ratio
could not be increased further.



to soybean oil in the early period.

2.2 Renewable Diesel Boom and the Low Carbon Fuel Standard

California’s clean fuel mandate, the Low Carbon Fuel Standard (LCFS), is one of the most
ambitious in the world, aimed at reducing green house gas (GHG) emissions from fuels by
30% by 2030 (CARB (2025)). The central mechanism of the mandate is to generate a credit
deficit every time an agent (i.e., refinery) sells a fuel (e.g., regular diesel) that is above
the mandate GHG emission threshold in California. To be compliant, these agents need to
acquire credits to offset their deficits, and they can do so by either purchasing cleaner fuels
or by purchasing credits directly. Thus, agents in deficit will buy credits from clean energy
producers.

The cleaner the fuel, the higher the number of credits it generates. In other words, cleaner
fuels receive greater subsidies relative to ”less clean” alternatives. For example, consider two
identical biodiesel plants that use the same feedstock and chemical processes, with the only
difference being their locations: one in Nebraska and one in Indiana. If both plants sell
their product under California’s Low Carbon Fuel Standard (LCFS), the biodiesel from
Nebraska would have a lower carbon intensity (CI) and therefore generate more credits,
since transportation emissions would be reduced due to the shorter shipping distance to
California.

One of the cleanest fuels produced to supply California’s market is renewable diesel (RD).
The product is able to fully substitute for regular diesel (i.e., does not need blend) and can be
produced using several different inputs (i.e., tallow, used cooking oil, vegetable oils). Due to
the combination of high credit premiums, strong profitability, and ambitious program targets,
renewable diesel (RD) production increased significantly. Production surged from 400 million
gallons in 2018 to 1,200 million gallons in 2022 (EIA| (2024)), as illustrated in Figure[2] This
expansion resulted in renewable diesel and FAME biodiesel together capturing approximately

60% of California’s diesel market by 2023, with the remaining 40% consisting of conventional
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Figure 2: Renewable Diesel production and consumption and soybean oil use for RD production.

Source: EIA and CARB, 2024.

Note: The left y-axis represents the annual US production and consumption of renewable diesel, while the
right y-axis shows the volume of soybean oil used in RD production. The vertical red line marks the
beginning of the RD boom. Note that soybean oil was not used in RD production prior to the boom in
2021.

non-renewable diesel. Within the renewable portion, renewable diesel accounts for roughly
85% of consumption, while FAME biodiesel represents the remaining 15%.@

Before the "boom” in 2021, soybean oil accounted for 0% of the feedstock used for RD
production. After the "boom”, soybean oil accounted for around 33% of feedstock used for
RD production (CARB (2024)).

This is significant for two reasons. The technological improvement of RD, that created
a perfect substitute, takes off the blend barrier for RD, unlike FAME biodiesel. Previously,
fuels could only contain up to 5% of FAME Biodiesel, which not only limited the expansion
of the biofuel, but also limited the use of soybean oil for fuel purposes.ﬁ

The second reason, and more important for this study, is that the boom led to a drop
in US exports of soybean oil to almost zero, as noted in Figure [3| This happened for three

main reasons: (i)RD producers opted to use more readily available domestic soybean oil to

2FAME biodiesel and renewable diesel represent alternative diesel sources with distinct production pro-
cesses. FAME biodiesel production relies on transesterification of vegetable oils, which retains some residual
oxygen content in the final product. In contrast, renewable diesel production involves hydrotreating and
hydrogenation processes that eliminate residual oxygen entirely.

3In reality, even though the legal limitation was 5%, the most common blend was 2-3%.



keep up with increasing demand, (ii) Domestic food demand for soybean oil (i.e., cooking
oil) is inelastic, and (iii) Global vegetable oil supply is inelastic in the short run. Therefore,
the RD boom re-shaped the soybean oil demand system by increasing domestic demand to

levels that significantly cut exports (GATS| (2024)).
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Figure 3: US Yearly exports of soybean oil and corn.

Source: Foreign Agricultural Service/ USDA, 2024.

Note: The red vertical line represents the RD boom. Note that soybean oil exports significantly drop after
the boom, while corn remains unchanged.

2.3 Other uses for agricultural inputs

Feedstock for fuel is not the only use for the two agricultural inputs studied. The largest
share of demand for these products, before the introduction of biofuel mandates, was for
food and animal feed (USDA| (2025)).

Corn is a staple food that serves as the base source of calories in many parts of the
world. It also serves as animal feed, especially for pork and chicken. That makes the
domestic demand for corn highly inelastic, stable at around 5.5 billion bushels a year over
the past 24 years.

Soybean oil is mostly used as cooking oil in industries and in homes. While demand is
also inelastic to price, as corn, the use of soybean oil grew exponentially in the US between
2000-2014 due to an increase in domestic crushing capacity. After that period, use has been

mostly stable at around 14 billion lbs a year.



3 Conceptual Framework

A stylized way of thinking about supply and demand for agricultural products is by defining
supply and demand functions subject to exogenous shocks (e.g., weather, geopolitical, and
demand shocks). Following [Baumeister and Peersman (2012), I define, for any agricultural

product, demand and supply, respectively, as in Equations [I] and [2]

Q?:_dt'Pt*+€§l (1)

Q) =s-P+e (2)

Denote QP and Q¥ as demand and supply for an agricultural commodity, respectively,
and d; and s; are the slopes of the demand and supply curves at time t. These parameters
are the supply and demand responses to price changes.

Supply and demand deviate from the steady state given exogenous and uncorrelated
shocks € and €/. These shocks follow a distribution such that E[e;] = 0, E[¢f] = 0, and
varlef] = o2, and var[el] = o7,.

Solving equations[I]and [2] yields the equilibrium prices and quantity denoted in equations
[3] and [4l

Ed—ES
P* — t t 3
¢ 5t+dt ( )

si€d + dye;
St + dt

Q; = (4)

Hence, combining the model above and the assumption of uncorrelated supply and de-

mand shocks, I obtain the price and quantity variance for these markets, described in Equa-



tions [B and 6l
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O-d + Us
VCLT[Pt] = m (5>

Stag + dyo?

Var[@t] = m (6>

In the subsections to follow, I expand on the model proposed from Baumeister and
Peersman for crude oil, adjusting it and decomposing its parameters for the agricultural
sector. Using this model, I discuss each of the components of the variances for the corn and
soybean oil markets and the potential sources of change in variance after the implementation
of biofuel mandates. I start by discussing the variance of demand shocks (¢¢) and finish by

discussing changes in the slopes of the supply and demand curves in these markets.

3.1 Demand Shocks in Agricultural Markets

As discussed in Section 2, the products studied in this research have two main uses: food/ feed
and, especially after the implementation of the RFS and LCFS, fuel. The excess/ residual
supply is either exported or held as inventory. Using the portfolio variance approach, I
assume that the variance of the demand shocks depends on the share/ weights of the input
use for each type of use (i.e., food, exports or fuel), the variance of the distribution of the
demand shocks for each type of use, and the covariance of the portfolio, as in Equation [7]

where w is the matrix of the share of that agricultural product uses.

o7 =w'Sw (7)

Where,
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Wtood Ofood COV(fuel, food) COV(food, exp)
— — 2
W = | Wryel and X = COV(fuel, food) Otuel COV(food, exp) (8)

2
Wexp COV(food’ exp) COV(fuel, food) Oexp

Following from equations [5] and [6] after keeping all other parameters fixed, I find that a

change in variance should affect the market as equation [9]

oVar|P, oVar
# >0 and ﬂ >0 9)
do; do;
First, T assume that 07, > 07,4 [ also assume that wiy, < w?i‘z In other words,

I assume that energy demand shocks are more volatile than food demand shocks, following
Wang, Wu, and Yang (2014), and that biofuel mandates did not reduce the share of any
agricultural input for fuel production.

That is, the share of that agricultural product for fuel use is at least as big as before the
mandate and demand shocks from energy markets have a higher variance than demand shocks
from the food sector. These assumptions imply that demand variance changes depends on
how big the changes in the shares wy, are and how volatile energy markets are 67,;.

Second, I assume that all covariances are negative. An intuitive way to think about it is
that a positive fuel demand shock (i.e., a blending mandate) reduces demand in the other
sectors. Thus, the negative covariances help dampen the effects of increased use for fuel.

As the policy is not aimed at minimizing the variance of this portfolio (i.e., achieve an
optimal portfolio of demand components), the effects of the changes in weights (i.e., demand
shares) are uncertain. I hypothesize that, because of increased weights for fuel use, after the
implementation of mandates, summed with high volatility regimes in energy markets, total

price variance increases. In short, this portfolio readjustment led to increase variance.
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3.2 Slopes of Supply and Demand Curves in Agricultural Markets

The slopes and elasticities of agricultural supply and demand is a widely studied topic.
Nerlove (1958) is the first author to discuss the response of acreage to unexpected supply
shocks (e.g., weather). Roberts and Schlenker (2013)(RS) estimate short-run and long-
run supply and demand elasticities for corn, rice, soybeans and wheat using instrumental
variables and 3-stage least squares approach. Hendricks, Smith, and Sumner| (2014)(HSS)
use a county level panel dataset to estimate short-run and long-run corn and soybean supply
elasticities in the US.

Both RS and HSS find that short-run supply elasticities are small and land use changes,
in the US, are mostly attributed to changes in the intensive margin (i.e., crop rotation). HSS
argue that the majority of the response happens in the short-run. RS finds even less elastic
demand elasticities, approximately half of the elasticities in HSS.

The RS and HSS papers are set around the implementation of biofuel mandates. In fact,
RS uses the supply and demand elasticities calculated to evaluate the impacts of the RFS.
Nevertheless, the underlying assumption in both papers is that the implementation of biofuel
mandates did not structurally changed supply elasticities and the slope of the supply curves.
I maintain this assumption to argue that the slope of the supply curve is unchanged for both

corn and soybean oil after the implementation of biofuel mandates.

3.3 Slope of the Demand Curve

Demand for agricultural products was mostly linked to food and feed consumption and
exports before the biofuel mandates. Before the mandates, around 10% of corn and 3% of
soybean oil were used for fuel production. Currently, this share is 36% for corn and 48%
for soybean oil (USDA| (2025)). In order to explain any changes in price variance and in
quantity variance, given equations[5land[6] I discuss the concept of marginal market elasticity
of demand for agricultural products.

In general, the demand for agricultural products can be broken down in two segments:

12



domestic consumption, including inventories, and exports. If domestic supply is larger than
domestic consumption, then the export market is the marginal user of the good. Otherwise,
some sector of the domestic consumption is the marginal user.

As prices are set at the marginal unit of consumption, the slope of interest in this study
(dy) is the marginal demand slope. In other words, the price-setting mechanism depends
exclusively on the slope of the marginal demand. Note that each market still has its own
slope (e.g., food use, fuel use), but I argue that the price setting one is exclusively the
marginal consumption market.

Let us use corn as an example. In 2023/24, the US produced around 15 billion bushels
of corn, and domestic demand was around 14 billion bushels. That means the US had a
surplus, which implies, that the marginal market was exports. In this case, the domestic
demand is intra-marginal in terms of demand. Equilibrium prices, then, depend on how
much product the export market can take, and that is defined by its market elasticity and
slope.

Therefore, for this study, biofuel mandates can only change the slope of demand if they
change marginal demand. For example, if exports drop to zero, as is the case of soybean
oil, the marginal demand changes from exports to the domestic market. Overall, studies like
Fontagne, Guimbard, and Orefice| (2019) show that the exports demand is significantly more
elastic (i.e., flatter slope) than domestic consumption. For corn, |[Fontagne, Guimbard, and
Orefice (2019) measure that the free trade exports elasticity of corn is -3.13, compared to
Ghanem and Smith (2022) domestic elasticity of demand of -0.051. Thus, I expect that either
demand elasticity remains the same or becomes much less elastic. Following from Equation
P, if the marginal consumption changes, and the supply curve intersects with demand at a
steeper part of the curve, the effects on price variance can be significant.

Another way of thinking about this is by approaching this problem as a change in the
demand pool. Biofuel mandates are adding a new set of buyers (e.g. processing plants and

fuel blenders) to the demand pool of corn and soybean oil. In theory, adding more buyers
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adds to the diversification of the pool and should reduce demand volatility.

However, under mandates, these new buyers have inelastic demand (i.e., they need to
comply with the mandate). If demand increases driven by these inelastic buyers shifts
demand outward sufficiently, to the point where other more elastic buyers are priced out
(e.g., exports go to zero), demand becomes less elastic. Less elastic demand implies higher
volatility, as in equation

Therefore, despite adding more buyers to the demand pool, the shift in domestic soybean
oil demand changed who the marginal buyer is, from a more elastic buyer to a less elastic

one. Thus, I hypothesize that the RD boom increased price volatility in soybean oil.

3.4 Aggregate Effect

Now, I discuss how the aggregate effects can change price and demand variance. As discussed,
I are assuming the supply side effects are unchanged by biofuel policies.

By assuming that energy market demand shocks increase overall demand shocks variance,
as described in Equation[7] the overall price and demand variance would increase. Therefore,
there are two possible scenarios: (i) Demand shock variance increase combined with no
change in the slope of the demand curve, and (ii) Demand shock variance increase combined
with a change in the slope of the demand curve.

In the first case, the effect is an increase in demand and price variance. From equation
[6], the total effect on demand variance is the combination described in equation As the
slope of demand remains unchanged, there are no effects attributed to d;. Thus, the demand

variance increases only by the increase in demand shocks.

Qvar(Qy) st dvar(Qy) os - (dy — 8¢)

- 0, and . 0
803 (St + dt)2 = ’ ane, 8dt (dt + St)S =

Ifdt>8t -

(10)
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(11)

The total effect in price variance is described in equation [12] Again, price variance

increases exclusively because of increased demand shocks.

dvar(F;) 1 Ovar(F;) 202
= >0 d = — <0 12
(90'2 (St + dt)2 ’ and, (9dt (dt + St)3 ( )

In the second case, as d; decreases when the marginal demand changes from exports to
the domestic market (i.e., steeper), price variance increases, while demand variance becomes
ambiguous. The direction of the effect depends if the demand curve is more or less steep
than supply. If demand is more elastic (i.e., d; > s;), an increase in d; implies higher demand
variance as in If not, then it decreases, as in Equation [II] Combining the elasticities
found by HSS (around 0.4 for corn) with export elasticities found by |[Fontagne, Guimbard,
and Orefice (2019) (around -5.66 for corn), and domestic demand elasticities in (Ghanem and
Smith (2022) (-0.051), I argue that if there was a change in marginal demand from exports to
domestic consumption, the aggregate effect on demand variance is ambiguous (i.e., increases
from a shock perspective, but decreases from an elasticity one). However, that effect is very
positive for price variance.

In summary, the scenarios analyzed within this framework suggest an increase in price
variance for both corn and soybean oil. For corn, I anticipate higher price variance following
the implementation of the RF'S, as it significantly increased the proportion of corn allocated
to fuel production. However, I do not expect the RD boom to have any effect on corn price
variance, as the marginal demand for corn remained unnafected during this period.

For soybean oil, I also expect price variance to increase as a result of the RFS. However,

this effect is likely to be about half of that observed for corn, since the proportion of soybean
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oil used for fuel (approximately 20%) was about half of the corresponding share for corn
(40%) over most of the sample period. In contrast, I anticipate substantial effects on soybean
oil volatility following the RD boom. The surge in domestic demand during this period
shifted the supply-demand intersection to a less elastic part of the demand curve, amplifying

price variance.

4 Data and Methods

The dataset consists of monthly nearby contracts IVols for soybean oil, corn, soybeans,
soybean meal, wheat, live cattle, sugar, and coffee from the Chicago Board Options Exchange
(CBOE) and WTI Crude Oil from the NYMEX and the VIX from the Chicago Board Options
Exchange (CBOE), from April 2004 to March 2025, extracted from Bloomberg. This series
aggregates the daily closing prices considering the most traded option that day. Following
Cui (2012), they represent at-the-money (ATM) options for that maturity.

The data are divided in three groups: biofuel commodities (corn and soybean oil), agricul-
tural commodities susceptible to spillovers from biofuel mandates (soybeans, soybean meal
and wheat) and exogenous agricultural commodities (sugar, coffee and live cattle). While
the theoretical framework applies mainly to biofuel commodities, high linkages between agri-
cultural products can lead to volatility spillovers across these markets (Serra and Zilberman
(2013)). Thus, I study not only the direct effects of these changes on biofuel commodities,
but also the potential spillovers to related commodity markets.

I model monthly IVols to study the effects of biofuel policies implementation and ex-
pansion on agricultural commodity volatility. I do this in two main ways. First, I estimate
a model similar to |Adjemian et al. (2017) and |Adjemian, Petroff, and Robe (2022). Sec-
ondly, I estimate the same model, but using synthetic controls approach (Abadie (2021)) for

robustness.
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4.1 Synthetic Controls

Using exogenous agricultural commodities data, I construct synthetic controls, as conceptu-
ally introduced by |Abadie and Gardeazabal (2003) and expanded by |Abadie (2021). The
synthetic control (denoted as Y””ls) estimates comprise all exogenous agricultural commodi-
ties mentioned above, excluding corn and soybean oil, which are the target variables in this

study. I estimate it using non-negative least squares, as described in

w* = argmin||X; — Xow||3 subject to w>0 and 1'w=1 (13)

Where X is the implied volatility of the target products and X is the vector of "non-
treated” (i.e., exogenous) commodities. The constraints restrict the weights to be positive
and sum up to one. Thus, I have two distinct synthetic control estimates, ymmils and Yew,

from equation

i/(],i,t = Z’wjy},t (14)

I choose sugar, live cattle and coffee for controls as they are the exogenous in this analysis.
Intuitively, these commodities are unlikely to have been affected by the implementation of
biofuel policies (Adjemian, Petroff, and Robe (2022)). This is a key element of this analysis,

as an unbiased estimator requires no spillover to controls.

4.2 Linear approximation under Black-Scholes

To address the linearity of synthetic controls relative to the non-linearity of the recovered
implied volatilities from the Black-Scholes model. The model is described in |15 where N (d;)

and N(d2) are CDFs of a standard normal evaluated at those points. A simple observation
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shows that the function is non-linear in standard deviation.

C = N(d))S, — N(do) Ke™" (15)
In (5¢) + <r+%2>t
where d; = ol
dy=d, — oVt

As the weights in equation [13| are linearly estimated, this could lead to bias. I address
this issue by choosing ATM options under short term expiration. Following Brenner and
Subrahmanyan (1988), I know that for ATM calls S = Ke ""=Y. This simplifies both d;
and dy, as in equation [16] Plugging back equation [L6]and the ATM condition, I get equation
1z

dy = X" dy = (16)

C(S,1) = {N (LTJT——t) N (—%a\/T——t)] s (17)

2
Using Taylor’s formula, for a small x, I get equation , in which N'(0) = \/LZ? ~ 0.4.
Then, for a small o/T —t I get equation
N"(0
N(z) = N(0) + N'(0)z + #xQ + O(z%) (18)
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C(S,t) ~ 0.4S0+/(T — t) (19)

Therefore, under these conditions, recovering the implied volatility from the Black-Scholes

formula is approximately linear.

4.3 Synthetic Controls Estimation

I estimate the controls using seven years of monthly data, from January 1996 to December
2002. The validation period is between January 2003 and December 2005.

Table 1 shows the weights for the four controls estimated for the biofuel variables - two
for corn and two for soybean oil. Table 2 presents the summary statistics for the observed

volatilities and synthetic controls.

Table 1: Synthetic Control Weights for Each Commodity

Commodity Corn  Soybean Oil

Coffee 62% 48%
Sugar 22% 39%
Live Cattle 16% 13%

Note: The table reports synthetic control weights (estimated via Non-negative Least Squares) for Corn and
Soybean Oil. Monthly implied volatility observations for the control commodities (Coffee, Sugar, and Live
Cattle) from 19962002 were used to construct the synthetic controls, which were validated over the
2003-2005 period.

Figure |4| compares the synthetic controls with the observed implied volatilities (IVs). In
the two bottom panels, I highlight the training period. The two vertical red lines represent
the implementation of the RFS and the RD boom, respectively.

I proceed by calculating the differences between the actual values and controls and defin-

ing lowercase letters as the natural logarithm. Following I define tv;;; as the log excess

implied volatility of commodity i relative to commodity j at time t.
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Table 2: Selected Implied Volatility Summary Statistics

Soybean Oil Corn Synthetic  Soy Synthetic Corn
Oil

Full Sample - 1999 to 2024
Observations 357 357 357 357
Min 3.39 6.63 6.07 7.15
Mean 24.44 27.13 22.81 26.95
Median 21.51 24.88 21.39 24.97
Max 188.01 183.50 135.41 183.09
St Dev 14.28 13.96 9.29 11.58
Pre-RFS - 1999 to 2005
Observations 134 134 134 134
Min 3.39 11.75 14.11 17.02
Mean 21.66 23.53 21.34 25.20
Median 20.89 22.04 20.81 24.01
Max 39.25 43.31 34.02 42.96
St Dev 6.01 6.44 4.13 5.19
RES Period - 2006 to 2020
Observations 169 169 169 169
Min 7.43 6.63 6.06 7.15
Mean 22.56 28.06 22.81 27.05
Median 20.69 27.06 21.77 25.50
Max 97.29 101.13 44.93 68.19
St Dev 9.38 11.00 6.30 8.05
RD Boom - 2021-202/4
Observations 49 49 49 49
Min 19.32 16.44 13.95 16.38
Mean 30.98 26.82 25.99 30.50
Median 29.74 24.44 21.60 25.38
Max 51.73 47.88 135.41 183.09
St Dev 5.69 8.23 19.26 23.88

Source: Bloomberg (2024) and Author.

Note: This table provides summary statistics for implied volatilities of soybean oil, corn, and their
respective synthetic controls. Statistics are reported by subsample for monthly observations and include
the minimum, mean, median, maximum, and standard deviation.
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Figure 4: Comparison between target variables and synthetic controls
Note: This figure displays the actual implied volatilities (represented by the blue lines), the equally
weighted control (black lines in the top row), and the estimated synthetic control (red line in the bottom
row). The vertical red lines indicate the implementation of the RFS and the onset of the RD boom,
respectively. The blue-shaded area on the bottom row charts highlights the training period for the
synthetic control. The vertical axis represents the log excess implied volatility of the target variable
relative to the control.

Oijt =Y — (] (20)

4.4 Empirical Approach and Estimation

I estimate the models described in equations [21] and [22| by ordinary least squares (OLS).
The vector ¢, captures the autorregressive parameters of the model. I define RF'S; as a
dummy variable for the presence or not of the policy. I explicitly control for the blend-wall
in the corn regression by adding the dummy BW,. EX P, is a regime changing variable that
is equal to 1 when exports of at least one of the biofuel goods is zero. The variable 7., is
the de-meaned log implied volatility calculated for WTT futures and X; is a set of control
variables, such as a specific controls for COVID, weather shocks and global financial crisis.

To evaluate the effects of the RFS, I observe coefficients 8, and ;. The first is the
direct effect of the policy implementation, related to a change in expectations regarding

biofuel demand, while the second is whether or not the relationship between the underlying
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product with energy markets changed after the implementation of the RFS. Coefficient (3
is the effect of having no exports (i.e., moving to a steeper portion of the demand curve) on

implied volatility.

p
oir = Po + Z Or0it—ky + B1 RES; + Bo BWi1(i—corn) + 03 EXPi1(cap,<E) (21)
k=1

+ B4 (RFS; - Gutit) + 0" X + €

p
Gie = Bo+ Y _ Okbis—ri+ BLRES; + Ba BWiLi—corm) + B EXPil(ap<y  (22)
k=1

+ 81 (RFS; - Gyrit) + 0' Xy + €

The two periods studied are significant as they provide insights into two distinct mech-
anisms. [ define the RFS period as the market integration phase, during which the use of
agricultural inputs for biofuel production began to rise, particularly for corn. A key charac-
teristic of this period is the increased connection between agricultural and energy markets,
leading us to test whether this interaction varies for different agricultural fuel inputs.

Conversely, the RD boom refers to the period characterized by strong incentives for RD
production, resulting in a surge in the use of soybean oil as a fuel input. This shift caused
a notable decline in soybean oil exports and moved the intersection of supply and demand
to a steeper portion of the demand curve. I leverage this period to evaluate the effects of
changes in export regimes.

Given the theoretical framework presented in Section 2, I anticipate that corn markets
will exhibit stronger responses to the RFS in both models, but both products are affected
by the RFS implementation. In contrast, the RD boom is expected to primarily impact

soybean oil markets, leading us to expect significant results for soybean oil but not for corn,
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whose exports regime remained unchanged.

5 Results

Table |3| presents the main results for corn, while table [4| presents the main results for soybean
oil. The top row indicates the model and the specification. The lag specifications were

determined using the Akaike Information Criterion (AIC).

5.1 Corn
Table 3: Impact of Biofuel Policies on Corn Volatility

CORN OLS OLS + Ag Controls Synthetic Control
RFS 0.18%* 0.17%* 0.23**

(0.04) (0.03) (0.05)
Blend-Wall -0.22%* -0.13* -0.12%*

(0.04) (0.04) (0.04)
RD Boom - - _
RFS X o 0.52%%* 0.43** 0.36%*

(0.15) (0.14) (0.12)
Other Ag Commodities No Yes -
Weather Controls Yes Yes Yes
Observations 340 340 340
F-stat 24.98 31.76 28.26
R-square 0.52 0.61 0.51

Note: The table presents regression results for target coefficients under different specifications.
Synthetic control is the control estimated following Abadie and Gardeazabal (2003). Results
represent a percent change in corn implied volatility. Robust standard errors are in parentheses.
Significance levels: * p < 0.05, ** p < 0.01.

Results for corn, indicate that the implementation of the RFS increased price risk by
around 19%, on average. This is in line with the theoretical approach. Corn usage for fuel
significantly increased after the RFS implementation to more than 30% in the first two years
of the policy. Drawing from equation [7} the implementation of the RFS translates to a big

increase in wyye;, which would lead to higher price variance.

23



The interaction term between the RF'S implementation and WTT crude oil shocks reveals
additional insights. Findings indicate that energy shocks become significantly more relevant
after the RFS implementation, contributing to increases in corn volatility. In essence, periods
of heightened volatility in the energy markets correspond to greater overall volatility in corn
prices. Conversely, when energy market volatility is low, corn volatility tends to decrease.
This observation aligns with equation |7, which posits that both the share of fuel use and the
volatility of fuel markets play crucial roles in influencing agricultural price risk.

In summary, the RFS increased corn volatility because it increased the interaction with
the energy market and energy markets volatility was high in the period. This is observed
in periods like 2008 and recent years. However, I do not discard the possibility that under
moments of low volatility, energy markets could dampen volatility in corn markets, following

standard portfolio variance theory.

5.2 Soybean Oil

Table 4: Impact of Biofuel Policies on Soybean Oil Volatility

SOYBEAN OIL OLS OLS + Ag Controls Synthetic Control
RFS 0.05* 0.00 0.00
(0.22) (0.02) (0.03)
Blend-Wall - — -
RD Boom 0.18%* 0.21%%* 0.16**
(0.05) (0.04) (0.06)
RFS X o 0.34** 0.24%%* 0.34%%*
(0.10) (0.06) (0.11)
Other Ag Commodities No Yes -
Weather Controls Yes Yes Yes
Observations 340 340 340
F-stat 44.08 61.61 39.65
R-square 0.62 0.72 0.61

Note: The table presents regression results for soybean oil implied volatility under different
specifications. Synthetic control is defined following Abadie and Gardeazabal (2003). Results
represent a percent change in volatility given a 1% change in the explanatory variables. Robust
standard errors are in parentheses. Significance levels: * p < 0.05, ** p < 0.01.
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The results for soybean oil indicate that the RF'S had a minimal impact on price volatility.
However, there are some indications in the interaction model that the relationship between
energy markets and soybean oil volatility mirrors that of corn. I hypothesize that this
reduced effect may be attributed to the slower adoption of soybean oil for fuel compared
to corn, leading to less pronounced volatility impacts in the early RFS years. According
to portfolio theory, the significance of energy markets on soybean oil variance is contingent
upon the share of soybean oil utilized as fuel.

This is also predicted in the model. The increase in share of soybean oil used for fuel
production due to the RFS was insufficient to induce drastic changes to price risk. In
the same time-span that took corn usage for fuel to jump to 40%, soybean oil use for fuel
production was lower than 20%. This reflects in a low enough wy,; in equation to generate
significant effects. I hypothesize that these effects may begin to materialize given the recent
uptick in soybean oil usage for fuel production.

On the other hand, the effects of the RD boom are notable. A consequence of the RD
boom was that US soybean oil exports dropped to zero, as shown in figure Thus, this
event would have changed the marginal elasticity of demand for soybean oil. This move
shifted demand to a less elastic portion of the demand curve, which would increase price
volatility according to equation

Results point that the effects of the RD boom, regardless of the approach used, are
around 18%. That is, the change in exports regime caused by the increased use of soybean
oil for fuel production resulted in a 18% increase in price volatility. These results highlight
the importance of exports as a buffer to volatility. They also highlight a key factor for poli-
cymakers to take into account: overstretching domestic demand and foregoing participation

in international markets.
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6 Conclusion

Understanding the mechanisms that drive agricultural price volatility in the era of renewable
fuels is fundamental for managing risk among farmers, merchandisers, users and processors.
While the increased demand for agricultural products resulting from biofuel mandates has
supported farmers with higher prices, it also introduced new market dynamics.

In this paper, I categorize these changes into two groups: increased integration with
energy markets and changes in the slope of the demand curve. My analysis reveals hetero-
geneous effects across different commodities. I estimate that corn was significantly impacted
by the market integration mechanism, experiencing a 19% increase in price volatility. In
contrast, soybean oil was mainly affected by the slope of the demand curve mechanism, with
an estimated increase in volatility of 18%.

Equally important, I find that different volatility regimes in energy markets play a crucial
role in shaping the volatility of these agricultural commodities. After the introduction of the
biofuel mandates, periods of high volatility in energy markets correspondingly increased the
volatility of agricultural commodities. Conversely, periods of low volatility can dampen the
volatility of corn and soybean oil.

These results are relevant for policymakers and underscore the importance of compre-
hending the mechanisms associated with the implementation and future expansions of biofuel
mandates and other agricultural policies focused on increasing demand. For instance, I find
that when domestic demand increases to the point of restraining exports, it can significantly
elevate price volatility. The direct consequences of these changes affect option prices, in-
crease trading margins, increase crop insurance costs, could increase price risk and heighten

uncertainty in farmer revenue.
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