
 

 

 

 

 
Impeded Grain Barges: Midwest Regional Grain 
Price Dynamics under Mississippi River System 

Water Level Fluctuations 
 

Shujie Wu, Mindy Mallory, Teresa Serra, and Todd 
Hubbs 

 

 
 

Suggested citation format:  

Wu, S., M. Mallory, T. Serra, and T. Hubbs. 2025. “Impeded Grain Barges: Midwest Regional 
Grain Price Dynamics under Mississippi River System Water Level Fluctuations.” Proceedings 
of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market 
Risk Management, Chicago, Illinois, April 14-15, 2025. 
[http://www.farmdoc.illinois.edu/nccc134/paperarchive] 



IMPEDED GRAIN BARGES: MIDWEST REGIONAL GRAIN PRICE 

DYNAMICSUNDER MISSISSIPPI RIVER SYSTEM WATER LEVEL FLUCTUATIONS 

 
Shujie Wu1, Mindy Mallory2, Teresa Serra3, Todd Hubbs4 

 
 
 
 
 
 
 
 
 
 
 
 

Paper prepared for the NCCC-134 Conference on Applied Commodity Price Analysis, 

Forecasting, and Market Risk Management, 2025. 

 

Copyright 2025 by Shujie Wu, Mindy Mallory, Teresa Serra, and Todd Hubbs. All rights reserved. 

Readers may make verbatim copies of this document for non-commercial purposes by any means, 

provided that this copyright notice appears on all such copies. 

 
  

 
1 Shujie Wu is a PhD student at the University of Illinois Urbana-Champaign. Questions or other correspondence can 
be directed to Shujie Wu at shujiew2@illinois.edu. 
2 Mindy Mallory is an Associate Professor and Clearing Corporation Foundation Endowed Chair in Food and 
Agricultural Economics at Purdue University. Email: mlmallor@purdue.edu.  
3 Teresa Serra is a Professor and the Hieronymus Distinguished Chair in Futures Markets at the University of Illinois 
Urbana-Champaign. Email: tserra@illinois.edu. 
4 Todd Hubbs is a clinical assistant professor at University of Illinois. 



1 
 

IMPEDED GRAIN BARGES: MIDWEST REGIONAL GRAIN PRICE 

DYNAMICSUNDER MISSISSIPPI RIVER SYSTEM WATER LEVEL FLUCTUATIONS 

Abstract: This study investigates the relationship between the water levels in inland waterway 
systems and the corn Gulf spread, defined as the difference between local corn prices and the 
Gulf export price. Barge transportation, the primary mode for transporting corn to the Gulf 
export market, becomes unreliable during unusually high or low water levels, disrupting market 
dynamics. Using a spatial Durbin model (SDM) we analyze both the indirect and spillover effects 
of water levels on the Gulf spreads. The results indicate an inverse U-shaped relationship 
between the regional spread and both own-region water levels and neighboring water levels 
which drive significant spread changes, particularly during extreme water conditions. The 
optimal water level for minimizing the Gulf spread is estimated at about 21 feet, with a 10-foot 
deviation widening the spread by 4.55 cents per bushel and a 20-foot deviation increasing it by 
18.17 cents. Our findings provide direct insights into how fluctuations in water levels shape local 
grain markets.  

Key Words: grain barge transportation, Mississippi river floods and droughts, spatial Durbin 
model, price analysis 
 

Introduction 

Grain barges traveling through the Mississippi River system play a key role in the United States’ 
world-leading grain export industry. Concentrated in the Midwest, corn production drives 
substantial demand for transporting grain from the production sites to New Orleans, the largest 
US grain export hub5. The Mississippi waterway system flows southward through major corn 
fields, ultimately merging into the Gulf of Mexico. This serves as a natural channel for barge 
movements that connect Midwest supply with the demand of the Gulf export market in New 
Orleans. Barge transportation accounted for 53% of the US corn exported in 2020 (Henderson et 
al., 2023), due to its cost-efficiency and effectiveness.  

According to the Law of One Price (von Cramon-Taubadel & Goodwin, 2021), the price 
difference between two locations reflects the transaction costs, with transportation costs being a 
major component. Consequently, disruptions in grain barge traffic due to unfavorable water 
levels can affect the dynamics between the export and local prices. These unfavorable conditions 
arise when water levels are either too low to support barge navigation, or too high making barge 
movements risky.  

The direct effect of water levels on the Gulf spread has not been studied by previous 
research. Some studies focus on the impact of water levels on barge rates, while others evaluate 
the effects of barge rates on spreads. Li (2013b) demonstrates that barge rates increase 
nonlinearly and rapidly when water levels drop to critical lows, estimating that a one-foot 
decrease below a certain benchmark leads to a 1.51% rise in barge rates using regression analysis. 

 
5 Agribusiness Consulting, 2019, USDA Agricultural Marketing Service, 
https://www.ams.usda.gov/sites/default/files/media/ImportanceofInlandWaterwaystoUSAgricultureFullReport.pdf 

https://www.ams.usda.gov/sites/default/files/media/ImportanceofInlandWaterwaystoUSAgricultureFullReport.pdf
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Chen & Cheng (2024) further explore this by employing the SDM to assess the impact of river 
lock closures on barge rates. Chen et al. (2024) take a different approach by using a Gradient 
Boosting Decision Tree machine learning method, revealing an inverse U-shaped relationship 
between barge rates and water levels. Yu et al. (2007) use cointegration analysis to show that 
shocks in barge rates affect the export-local price dynamics over the long run. Similarly, Li 
(2013a) finds that a 1 cent per bushel increase in barge rates between St. Louis and New Orleans 
results in a 0.34 cent decrease in the average corn spot price in the Midwest relative to the Gulf.  

Some other studies focus on flooding. Fahie (2019) reports that the 2019 flooding on the 
Mississippi River caused the St. Louis Harbor to be closed for 38 consecutive days and 6.3 
million tons of grains to be unshipped. Amorim et al. (2023) suggest that the navigability of the 
Mississippi River has diminished and become fragmented in recent years, primarily in response 
to high water levels rather than low ones.  

The literature has also assessed how a particular drought impacts local grain prices. This 
literature has modeled the impacts of low water levels as a one-time treatment, comparing the 
results of the treatment against non-treatment periods. McNew (1996) focuses on the 1993 
drought’s impacts on price transmission between New Orleans and St Louis or Memphis. 
Through regression analysis and a dummy variable representing the 1993 drought, McNew 
(1996) finds that price transmission was halved during this period. Flores and Janzen (2023) 
employ a difference-in-difference model to measure the impact of the 2022 drought on local 
soybean spot-gulf price difference. Specifically, they analyze changes in the October local price 
spread between the 2015-2021 period and 2022, considering elevators' proximity to the river and 
controlling for production changes. Their results suggest that the 2022 drought impacted the 
local spread, with the effect declining with the distance to the river and with proximity to 
soybean processing facilities.  

The existing research has shed light on the complex relationship between barge rates and 
water levels, as well as between barge rates and the Gulf spread. However, there is limited 
understanding of how water level fluctuations specifically impact the Gulf spread. While barge 
rates are influenced by water levels, they are also affected by factors such as supply and demand 
dynamics and fuels costs. Hence, the two-step link between water levels and the Gulf spread is 
not a direct reflection of water levels. This article aims to bridge this gap by controlling for other 
intervening variables. By accounting for these variables this article seeks to provide a clearer 
understanding of the implicit pathways through which water levels impact the Gulf spread. 

This paper measures the effects of fluctuations in the Mississippi River system’s water 
levels on grain prices. We focus on the difference in corn prices between the export hub and local 
elevators, known as the Gulf spread. Unusually high and low water levels will have price 
impacts that spill over the geography through the grain transportation network. We disentangle 
water level price effects into direct and indirect, with the latter resulting from spillover effects 
across elevators in different regions. We use the Spatial Durbin Model (SDM) (LeSage, 2014) as 
our baseline model to assess the global spillover effects on regional Gulf spreads.  

This study contributes to the literature on Mississippi River grain barge transportation 
and grain prices in three ways. First, we investigate the direct impact of water level fluctuations 
on the regional Gulf spread and depict the relationship across the full spectrum of water levels. 



3 
 

Our results reveal an inverse U-shaped dynamic relationship and identify the optimal water level 
for barge movement. Second, we utilize the SDM to disentangle the direct effects of water levels 
on regional Gulf spreads from the spillover effects across regions. The direct effect of water 
levels reveals a statistically significant impact on the Gulf spread. The spread widens when water 
levels are either too low or too high. Spatial spillover effects are more pronounced than the direct 
effects, amplifying the pattern and making the total impact significantly larger than the direct 
effect alone. Third, our study enhances the understanding of risks facing the grain market in the 
context of climate change. Climate change has increased the frequency of extreme events, such 
as floods and droughts, causing water levels to significantly deviate from their optimal range 
(Stott, 2016). We find the optimal water level for barge operation is 20.62 feet, and a 10-foot 
deviation expands the Gulf spread by 4.55 cents per bushel, while a 20-foot deviation widens it 
by 18.17 cents.  

Background Information  

The U.S. is one of the world's leading corn exporters, with production concentrated in the 
Midwestern states, an area known as the Corn Belt (Appendix A). According to the USDA6, 
16.59% of U.S. corn production in 2022 was directed to the export market, with the remaining 
majority used domestically for ethanol production or animal feed. The Mississippi River serves 
as a major channel for transporting significant quantities of bulk grains to export hubs in New 
Orleans via barges (Henderson et al., 2023). 

In 1930, the U.S. Congress authorized a 9-foot channel navigation project on the Upper 
Mississippi River system, including the Mississippi River and the Illinois River, to facilitate 
barge movements (Appendix B). This initiative involved constructing a series of locks and dams, 
managed by the U.S. Army Corps of Engineers (USACE). The project divided the river into 
sections at different elevations, regulating water flow with dams. Behind each dam, the riverbed 
was dredged to create a navigation channel deep enough for barges to pass through. To enable 
barges to navigate the different elevations created by the dams, locks were constructed alongside 
them, serving as lifts for barges. The Lock and Dam 27 in St. Louis is the last facility on the 
Upper Mississippi River system. South of St. Louis, the waterway is usually deep and wide 
enough for barges to move freely due to convergence of several tributaries.  

The Upper Mississippi River locks are managed by three districts of the USACE: the St. 
Paul district,7 which oversees locks 1 to 10; the Rock Island district,8 which manages locks 11 to 
lock 22 and the Illinois River locks; and the St. Louis district9 which is responsible for locks 23 
to 27. During the wintertime, districts may close their locks due to freezing conditions. The St. 
Paul district usually ends the navigation season by the end of November and resumes in late 
March. The Rock Island district generally closes the river from the beginning of December to 
early March. The St. Louis district rarely announces lock closures due to winter freezes.  

Figure 1 shows the monthly average of downbound grain barge movements in tons from 
 

6 WASDE Feb 2024: https://downloads.usda.library.cornell.edu/usda-
esmis/files/3t945q76s/6108x0329/gx41p613n/wasde0224.pdf 
7 https://www.mvp.usace.army.mil/ 
8 https://www.mvr.usace.army.mil/Missions/Navigation/ 
9 https://www.mvs.usace.army.mil/ 

https://downloads.usda.library.cornell.edu/usda-esmis/files/3t945q76s/6108x0329/gx41p613n/wasde0224.pdf
https://downloads.usda.library.cornell.edu/usda-esmis/files/3t945q76s/6108x0329/gx41p613n/wasde0224.pdf
https://www.mvp.usace.army.mil/
https://www.mvr.usace.army.mil/Missions/Navigation/
https://www.mvs.usace.army.mil/
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lock 15 to lock 2710. These are consistent with river closures. At lock 15, there is no grain barge 
tonnage recorded in January and February and tonnage is infrequent in December and March. A 
similar pattern is observed in lock 25, though with slightly more tonnage. Since lock 25 is 
located near the south end of the Upper Mississippi River (Appendix B), winter freezes can shut 
down significant amount of barge operations throughout most of the region, weakening the 
linkages between the water levels and the Gulf spread.  

Despite the effort of regulating the water levels for favorable barge navigation, extreme 
water levels can still cause troubles as documented by previous research. The effects of the 2012 
and 2022 droughts are documented by Li (2013b) and Flores & Janzen (2024) and Steinbach & 
Zhuang (2023), respectively, while Fahie (2019) studies the 2019 flood. When water levels 
decrease, shrinking the Mississippi River system channels, barge traffic is restricted. Barges must 
reduce their loading capacity to reduce draft and avoid running aground (Appendix C). A low 
water level also limits towboats’ working size, further reducing the barge transportation capacity. 
On the other hand, extreme high water levels also disrupt barge transportation, as floods create 
unsafe navigation channels, forcing locks and dams to close. It is thus relevant to study how 
water levels impact the Gulf spread.  

Data and Descriptive Analysis 

We access daily corn spot bids from GeoGrain through Bloomberg for the period from 
04/02/2012 to 11/30/2022. This dataset includes grain corn bids (in dollars/bushel) for grain 
elevators, ethanol plants, and feed mills, along with the geographical coordinates. We aggregate 
corn ethanol plants and feed mills into a single category to represent local corn markets. We 
exclude elevators with more than 15% missing values during the sample period from the dataset. 
We source daily corn export bids (in dollars/bushel) from the Louisiana and Texas Export Bids 
report published by the USDA, which provides corn bids from export elevators at Gulf Coast 
ports in Louisiana.  

We collect water level data (in foot) from 25 stations of the Mississippi River system 
from the USACE11 and USGS (United States Geological Survey) 12  websites (Appendix C). 
These include 21 stations on the Mississippi River, 3 on the Illinois River, and 1 on the Ohio 
River. Water levels are measured using three different vertical datums—MSL191213, NGVD2914, 
and NAVD8815 —adjusted by zero gages specific to each location to accurately reflect the true 
water level. The water level data covers the same timespan as corn prices data. We analyze the 
relationship between water level changes and the Gulf spread via barge transportation, excluding 
data from December to March each year to eliminate the impact of river freezes on barge traffic. 
Winter months are assessed separately in the robustness check section.  

 
10 Lock numbers increase from north to south, with lock 15 being farther north than lock 27. 
11 https://rivergages.mvr.usace.army.mil/WaterControl/new/layout.cfm 
12 https://dashboard.waterdata.usgs.gov/app/nwd/en/?region=lower48&aoi=default 
13 Mean Sea Level 1912 
14 National Geodetic Vertical Datum of 1929. MSL1912 = NGVD29 + 0.51 feet 
https://www.cityofdubuque.org/DocumentCenter/View/30733/Port-of-Dubuque-Master-Plan-and-Stormwater-
Management-Table_FINAL?bidId= 
15 National American Vertical Datum of 1988. MSL1912 = NAVD + 0.68 feet 

https://rivergages.mvr.usace.army.mil/WaterControl/new/layout.cfm
https://dashboard.waterdata.usgs.gov/app/nwd/en/?region=lower48&aoi=default
https://www.cityofdubuque.org/DocumentCenter/View/30733/Port-of-Dubuque-Master-Plan-and-Stormwater-Management-Table_FINAL?bidId=
https://www.cityofdubuque.org/DocumentCenter/View/30733/Port-of-Dubuque-Master-Plan-and-Stormwater-Management-Table_FINAL?bidId=
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We impute missing values in the daily dataset using the previous observation. Then we 
aggregate to a weekly frequency by averaging daily values from each calendar week. This 
reduces data staleness and facilitates econometric model estimation. Sytsma and Wilson (2021) 
find a strong preference for transporting grain by barge over rail for elevators within 50 miles to 
the waterway, with this preference declining to zero at 175 miles. To ensure a strong connection 
between the water and the price, we focus on grain elevators within a 50-mile radius of each 
river station. We match each grain elevator with the nearest river station.  

We collect state-level weekly prices for ethanol and distiller’s dried grain with soluble 
(DDGS) from the USDA National Weekly Grain Co-product Report. We calculate the market 
value of ethanol and DDGS produced from one bushel of corn using state-level prices. This 
value (in dollars/bushel), referred to as the processing value, is uniformly assigned to all 
processing facilities within a state. We match each elevator with the nearest processing facility 
within a 50 mile-radius based on Euclidean distance. This ensures that local markets are located 
at a similar distance as the shipping point.  

We approach the transportation cost from the elevator to the nearest processing facility by 
multiplying the diesel price (in dollars/gallon) by the distance. This metric measures accessibility 
to the local processor market, given that trucks handle over 80% of domestic corn transportation 
(Henderson et al., 2023). We calculate transportation costs from the elevator to the river by 
multiplying the diesel price by the distance between each water station and the elevator. We 
retrieve the weekly diesel price in the Midwest from the US Energy Information Administration 
(EIA).  

Because water level is only available by water station, we calculate the mean elevator 
price by averaging prices across all matched elevators for each station. Although the water 
stations may not be the exact locations where elevators load their barges, they provide an 
approximation to the relevant water levels for each elevator. Figure 2 shows the locations of 
grain elevators (green dots), processors (red dots), water level stations (blue triangles), and the 
waterways (blue), under the 50-mile distance band. Our sample elevators and processing 
facilities are mainly located in Illinois, Iowa, Minnesota and Wisconsin.  

Figure 3 presents the historical variations in water levels at the St. Louis16 station and 
downbound corn barge movements through lock 27 (St. Louis) on the Mississippi River from 
2012 to 2022. The plot reveals similar seasonal patterns in water levels and barge activities, 
typically rising in the first half of the year and declining starting around June and July. The major 
exception happened in 2019 when the lock of St. Louis shut down for over a month due to 
flooding (Fahie 2019). The figure also shows exceptionally low water levels in 2012 and 2022, 
with levels dropping to or below 0 from September to November. Although water levels during 
the 2012 and 2022 droughts were similar, barge rates differed significantly between the two 
periods. Figure 4 demonstrates that barge rates in 2012 were consistent with those in other years. 
However, during the 2022 drought, barge rates spiked significantly, likely driven in part by the 
sharp increase in energy prices that began in early 2022.  

 
16 St Louis is situated at the confluence of the Missouri and Illinois rivers with the Mississippi River. Thus, the water 
level and downbound barge movement here reflect the conditions of the Mississippi River system. 
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The drought years 2012 and 2022 had the lowest water level in October, while the flood 
year of 2019 had the highest water level in June. Using the remaining sample years benchmarks, 
figure 5 shows heatmaps of county-level average Gulf spread differences, expressed in cents per 
bushel, between the October and June in each drought and flood year and the corresponding 
month in benchmark years. As discussed, Gulf spreads represent the difference between local 
prices and the Gulf price. In line with the Law of One Price, spreads tend to be negative, 
reflecting transportation costs. If transportation is impeded by unfavorable water level, then the 
spread is going to be more negative (wider). In October 2012, spread changes were less 
pronounced than in October 2022. In 2012, except for some counties south to St. Louis, where 
spreads decreased significantly (about 100 cents lower), most counties saw an increase in spreads, 
around 10-20 cents. Meanwhile, in October 2022, most counties experienced a substantial spread 
decrease of over 100 cents. For reference, the average October water level in St. Louis during 
benchmark years was 9.22 ft, which dropped by about 10 ft to similar levels both in 2012 (-0.94 
ft) and 2022 (-1.53 ft). In June 2019, due to the closure of lock 27, counties closer to the river 
experienced an expansion in spreads of about 20-30 cents, while more distant areas were less 
affected. The mean June water level in 2019 was 41.26 ft compared to 22.65 ft in benchmark 
years. These plots reveal that studying single drought or flood year provides limited insight into 
how extreme events affect barge transportation and, subsequently, grain prices, due to 
idiosyncratic differences across years. This highlights the importance of controlling for 
intervening variables such as energy prices that may influence outcomes and help isolate the 
impact of water levels on transportation and pricing.   

Method and Empirical Approach 

Our objective is to understand the spatial dynamics of Gulf spreads across different elevator 
clusters and their relationship with Mississippi river system water levels using our panel data. We 
rely on spatial regression models instead of traditional panel data methods because they are 
better suited for analyzing spatially correlated data. These models explicitly account for spatial 
dependencies among observations, allowing us to capture the direct influence of water levels at 
one location and their indirect effects through neighboring locations through spatial spillovers. 
This helps understanding how shocks propagate geographically. Additionally, by allowing for 
serial correlation, these models provide more accurate estimates of the parameters, reducing the 
bias that may arise from ignoring spatial correlation.  

There are three main types of spatial models, the spatial autoregressive model (SAR), the 
spatial error model (SEM), and the spatial Durbin model (SDM). SAR models measure how the 
dependent variable in one location is affected by the value of the dependent variable in 
neighboring locations. The SEM accounts for spatially correlated unobserved factors that may 
affect the dependent variable. The SDM allows for spatial interactions between both spatially 
lagged dependent and independent variables, and the dependent variable in the model. Choosing 
among these models requires implementation of model selection tests that we describe in the 
empirical implementation section.  

We use the Moran’s I test (Bivand & Wong, 2018) to examine the presence of spatial 
autocorrelation across the clustered Gulf spreads, which is essential to determine if a spatial 
model is needed. The test statistic is calculated as: 



7 
 

𝐼 = 𝑁
∑ ∑ 𝑤𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝐵𝑖
 −𝐵 ̅)(𝐵𝑗

 −𝐵 ̅)𝑁
𝑗=1

𝑁
𝑖=1

∑ (𝐵𝑖
 −𝐵 ̅)2𝑁

𝑖=1
,                                                                                                

(1)  

where N is the number of cross-sectional units (clusters), 𝐵𝑖
  (𝐵𝑗

 ) denotes the Gulf spread of 
water station i (j), 𝑤𝑖𝑗 is the spatial weight representing the geographical relationship between 
water station i and j, specified as the K-nearest weight matrix (K = 5), which assigns a same 
weight to the 5 closest neighborhoods.  𝐵 ̅ is the Gulf spread mean across all water stations. The 
expected value of Moran’s I is calculated as 𝐸(𝐼) = −1

𝑁−1
. The variance 𝑉𝑎𝑟(𝐼) is determined 

under the randomization assumption. Standard normal deviates 𝑍(𝐼) = 𝐼−𝐸(𝐼)
√𝑉𝑎𝑟(𝐼)

 are computed 

based on the estimated means and variances, with 𝑍(𝐼) allowing to test the null hypothesis that 
there is no spatial autocorrelation (Bivand & Wong, 2018).  If I is significantly lower (higher) 
than 𝐸(𝐼) , there exists a statistically significant negative (positive) spatial autocorrelation, 
otherwise there is no spatial autocorrelation. We calculate Moran’s I test for each week and for 
the entire sample to assess spatial correlation at both time frequencies (Beenstock & Felsenstein, 
2019).  

After confirming the presence of spatial correlation and the need for a spatial model, we 
refer to LeSage (2014) for guidance on the appropriate spatial model specification. LeSage (2014) 
argues that researchers in the presence of global spillover effects one should utilize the SDM 
model. The key difference between local and global spillover effects is that local spillovers are 
confined to a specific group of entities, while global spillovers extend beyond neighbors to affect 
more distant areas. The U.S. corn markets exemplify this global setting, as no local corn market 
operates in isolation from the broader network. Thus, we model the Gulf spread using the SDM 
model, and apply it to the panel data:  

𝑌 =  𝜌𝑊𝑌 + Ψα + Φµ + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝜀, 

 𝜀~𝑁(0, 𝜎2𝛺) ,                                                                                                                                    
(2) 

where 𝑌  is a 𝑁𝑇 ×1 matrix of regional Gulf spreads sorted first by region (i) and then by time (t), 
where N is the total number of regions and T the total number of weeks. 𝑊  is defined as 𝑊 =
𝑤 ⊗ 𝐼𝑇, with 𝐼𝑇 being a 𝑇 ×T identity matrix, ⊗ denoting the Kronecker product and 𝑤 (𝑁 ×N) 
capturing the spatial relationships between different regions. 𝑊𝑌 is the spatial lag matrix, which 
is measured as the linear combination of 𝑌 values from neighboring water stations. We expect 
the parameter representing spatial correlation 𝜌 to be positive, as an increase in Gulf spreads in 
one area may lead to increases in adjacent areas, indicating a tendency for spreads to propagate 
positively across the geographic space. Ψ = 𝐼𝑁 ⊗ ι𝑇 is a region fixed effects matrix capturing 
time-invariant characteristics that are unique to each region, where ι𝑇  is a vector of order T 
containing ones. Φ = Ψ ⊗ ξ is the interactive fixed effect incorporating region and crop year. 
Let ξ = 𝜉𝑤 ⊗ ι𝑁 be a crop year fixed effects matrix that controls for changes in the supply of 
corn across years, where 𝜉𝑤 = ι𝑎 ⊗ ι𝑤  is a 𝑇 ×1 matrix, where w is the number of weeks in a 
crop year and a is the number of crop years in the sample, with 𝑇 = 𝑎 ×w and ι𝑁 is a vector of 
order N containing ones. The crop year fixed effect is defined by dividing the sample period into 
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crop years. Each crop year runs from November of the previous calendar year to October of the 
current calendar year. This division assumes that the harvest is nearly complete by November, 
representing the start of the new crop for each cycle. The region fixed effects control for time-
invariant differences in each region, such as the distance to the Gulf. The interactive fixed effect 
controls for the characteristics unique to each crop year and region, such as regional production, 
demand, and storage.   

We calculate the regional Gulf spreads by subtracting the export bids from the elevator 
spot bids and averaging on the regional level. The Gulf spread tends to be narrower prior to the 
harvest season, as corn supply and stocks usually reach their lowest levels, compared to wider 
spreads in the months after harvest. To account for seasonality in the Gulf spread, we de-
seasonalize the spreads by subtracting the monthly mean from each monthly observation. 

𝑋  is a 𝑁𝑇 × 𝐾  matrix of 𝐾  exogenous characteristics for each region, including the 
lagged processing value reflecting domestic demand and transportation costs to processors, 
which reflect the impact of accessibility to local demand sources. 𝑋 also includes transportation 
costs to the river and water levels, which jointly reflect transportation costs to the export market. 
Considering that export and local demand are the two primary destinations for elevators to sell 
their grains, in the absence of arbitrage opportunities, elevators should be indifferent between the 
two markets.  

By incorporating variables that reflect alternative corn markets to the Gulf, we control for 
major weekly spread variations that are not attributable to water.  We expect that increases in 
transportation costs from the elevator to the local processor will depress local prices, thus 
reducing the local Gulf spread. Transportation costs to the river are part of the costs of the overall 
costs of shipping corn from elevators to the Gulf. An increase in transportation costs to the river 
is likely to have a negative impact on the local Gulf spread, independent of water levels. 
Conversely, an increase in the local processing value may signal higher local demand and prices, 
leading to an increase in the Gulf spread. Based on literature insights, we hypothesize that the 
relationship between water levels and the Gulf spread follows an inverse U-shape, where 
deviations from optimal water levels for barge transportation reduce (widen) the Gulf spread. To 
capture this non-linear relationship, we include a quadratic term for water level. 𝑊𝑋𝑖,𝑡 is a linear 
combination of the values of 𝑋𝑖,𝑡 from neighboring regions which captures the influence of local 
markets and water levels in neighboring areas on the own Gulf basis.  

The panel consists of T = 389 time periods and N = 25 cross sectional units. We estimate 
the SDM model using Monte Carlo Markov Chain (MCMC) methods. To evaluate the SDM 
model against the SAR and the SEM models, we follow the approach outlined by Koley (2023 & 
2024). Specifically, we conduct the Rao’s score (RS) tests to determine if the SDM degenerates 
into a spatial autoregressive model (SAR, 𝛽2 = 0), spatial error model (SEM, 𝜌 = 0), or even a 
simple OLS model (𝛽2 = 0 and 𝜌 = 0). First, a joint test of 𝛽2 = 0 and 𝜌 = 0 assesses whether 
the true model specification significantly deviates from a simple OLS model. Then, separate tests 
on 𝛽2 = 0  and 𝜌 = 0  are performed to ensure that each spatial parameter is significant 
unconditional on the other one’s presence. If all three tests reject the null hypothesis, the SDM 
specification is a good fit.  
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 The SDM model estimates cannot be interpreted as simple partial derivatives of the 
dependent variable with respect to the explanatory variables due to the complex spatial 
dependencies involved. A change in one region affects all other regions through spatial spillovers. 
Hence, we use summary measures of direct, indirect and total impacts. We calculate the partial 
derivative matrix for the SDM following Golgher & Voss (2015). The average direct effect 
captures the impact of a unit change in a regional right-hand side variable on the Gulf spread in 
the same region, averaged across the N regions and T periods, reflecting the contemporaneous 
response at the same location. The average indirect effects represent the impact of a unit change 
in the regressor at neighboring locations on the Gulf spread in a particular region, averaged 
across N regions and T periods, capturing the spillover effects from changes in exogenous 
variables at nearby regions. The sum of the direct and indirect effects results in the average total 
effects, which measure the comprehensive response of the dependent variable to a unit change of 
the regressor.  

Results 

First, we apply the Moran’s I test to the weekly regional Gulf spreads to test for the presence of 
spatial autocorrelation. Figure 9 presents the kernel density plot of the weekly Moran’s I in blue 
and its corresponding expected value E(I) in red. Test results for 378 out of 389 weeks are 
positive and statistically significant at the 5% level, suggesting a prevailing positive spatial 
autocorrelation among regional Gulf spreads on a weekly level.  Table 1 shows the Moran’s I test 
result for the regional spread over the 389 weeks. The significance of the test statistic proves the 
existence of positive spatial autocorrelation over the whole sample.  

Next, we test the robustness of the SDM specification. Table 2 summarizes the results of 
both the joint and the individual tests. First, the joint test suggests that either 𝛽2 or 𝜌, or both 
should be nonzero. Hence, at least one spatial term should be included, making the OLS model 
inappropriate. The RS test and the adjusted RS test for 𝛽2 and 𝜌 indicate that both terms should 
be included in the model, confirming that the SDM model is the appropriate choice.  

Table 3 presents the results of the SDM estimation of the regional Gulf spread, 
decomposed into average direct, indirect, and total effects. For context, recall that the Gulf 
spread is generally negative. The coefficients for water level and squared water level show how 
changes in water levels affect the average spread between regional elevator prices and the Gulf 
export price. The estimated  𝜌  of 0.7 suggests a robust spatial relationships among the Gulf 
spreads in each region. The total effects of water level confirm an inverse U-shape, reflecting a 
nonlinear relationship with a positive linear and a negative quadratic term. This inverse U-shape 
suggests that the optimal water level that minimizes the Gulf spread is 20.62 ft. A 10-foot 
deviation from this optimal level widens the Gulf spread by 4.55 cents per bushel, while a 20-
foot variation widens the spread by 18.17 cents per bushel. The recent droughts in 2022-23, 
which resulted in water level decreases of around 20 ft in just 11 weeks 17 , highlight the 
potentially significant impact of extreme droughts, which can increase the Gulf spread by up to 
18.17 cents per bushel.  

 
17 Source: https://theconversation.com/record-low-water-levels-on-the-mississippi-river-in-2022-show-how-climate-
change-is-altering-large-rivers-193920 

https://theconversation.com/record-low-water-levels-on-the-mississippi-river-in-2022-show-how-climate-change-is-altering-large-rivers-193920
https://theconversation.com/record-low-water-levels-on-the-mississippi-river-in-2022-show-how-climate-change-is-altering-large-rivers-193920
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We decompose the total effects of water levels into direct and indirect effects. The direct 
effects measure the average impact of region-specific water levels on the Gulf spread. These 
suggest that a 10-foot deviation from the vertex would widen the Gulf spread by 0.81 cents, and 
a 20-foot deviation would increase the impact to 3.21 cents. The indirect effects of water levels 
are larger than the direct effects and imply that a 10-foot (20-foot) deviation from the vertex 
expands the Gulf spread by 3.74 (14.96) cents. These results highlight that, when the water level 
becomes more unfavorable for barges, the primary impact on the Gulf spread comes from the 
spillover effects from neighboring regions. This occurs because droughts or floods affect 
elevators located farther north, which must transport grain through multiple river segments to 
reach the Gulf, thus amplifying the impact on the Gulf spread.  

The coefficient for the corn processing value reflects how the Gulf spread reacts to the 
prices of corn processing outputs (ethanol and DDGS). A higher processing value may increase 
regional elevator prices, potentially redirecting more grain to domestic use, and weakening the 
connection between Gulf and elevator prices through transportation. Results suggest that a  one-
dollar increase in the processing value is associated with a 4.36-cent per bushel reduction in the 
Gulf spread. While the direct and indirect effects are positive, they are statistically insignificant 
at the 5% level, indicating that the Gulf spread is more influenced by the overall processing 
value rather than its regional variations. 

Higher transportation costs to processors reduce elevators’ access to the local processing 
market, potentially lowering elevator prices and widening the Gulf spread. The Gulf spread is 
estimated to widen by 0.19 cents per bushel for every dollar per mile increase in transportation 
costs from the elevator to the nearest processing facility within a 50-mile radius. The indirect 
effect is not significant, which suggests that each elevator’s spread is only affected by its own 
transportation cost to the processor. The total effect is 0.21 cents per bushel, reflecting the overall 
impact of transportation costs.  

Similarly, higher transportation costs to the river reduce accessibility to the export market 
and should expand the Gulf spread. While the direct effect is unexpectedly positive and 
significant, the indirect effect is negative and significant, resulting in a negative and significant 
total effect, with every dollar per mile increase widening the spread by 0.0047 cents. It is worthy 
to note that the impacts of the two transportation costs differ significantly in magnitude. Despite 
both costs being influenced by the same diesel price and similar distances (<=50 miles), truck 
costs to the river have a much smaller effect on the Gulf spread than the truck costs to the 
processor. 

Robustness Checks  

In this section we check the robustness of our results during winter, when segments of the river 
may freeze, impeding transportation, and for elevators located at different distances from the 
river.  

Winter Season 

Our analysis excludes the winter season from December to March, based on the hypothesis that 
water levels during this period matter less due to freeze-related lock closures. However, since not 
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every lock closes during winter and closure periods vary by lock, the linkage between water and 
the spread may still be relevant. Table 4 shows the SDM estimation results using data from 
December to March. The parameter 𝜌 is 0.49, reflecting a much weaker spatial relationships 
among the Gulf spreads during winter. Consistently, the indirect effects of water levels are 
similar in magnitude to the direct effects during winter, whereas in non-winter months the 
indirect effects are much larger than the direct ones. These findings suggest that northern 
elevators, which must transport grain through multiple river segments to reach the Gulf, cannot 
ship during freezes. Hence, their neighbors’ water levels no longer affect their spreads. As a 
result, local markets become the primary demand source for these elevators, resulting in positive 
and statistically significant direct, indirect and total effects of processing values.  

Alternative distance bands 

Elevators farther from the river may also be affected by water levels. To examine how the 
distance from the river influences prices, we estimate our model for elevators located in the 50-
100-mile and 100-150-mile distance bands, while keeping their maximum distance to the closest 
processor to 50 miles. Tables 4 and 5 present the estimation results. First, we observe that the 
spatial correlation coefficient 𝜌 decreases as elevators farther from the river, indicating that their 
prices are less spatially correlated. This suggests that barges build stronger regional price 
correlations than trucks or rails. Second, the impact of water levels diminishes as distance 
increases. In the 100-150-mile range, the indirect and total effects of water become insignificant, 
suggesting that local price variations are more strongly driven by processing demand. Finally, 
while the indirect effect of transportation costs to processor is insignificant at the 50-mile 
distance, it becomes significant at the 50-100 and 100-150 ranges, suggesting a stronger 
connection between the local prices and processors as the distance from the river increases.  

Conclusion 

Grain barge activities on the Mississippi River are relevant to agricultural economists and grain 
handlers as they are the primary means of transporting grain from production areas to the export 
market in New Orleans. Barge transportation becomes less reliable during extremely low and 
high water levels, creating a nonlinear relationship between water levels and the Gulf spread, 
defined as the difference between local prices and the Gulf export price. This paper studies, for 
the first-time, the impact of water levels on the Gulf spreads and disentangles the direct effect 
and spillover effect using a spatial Durbin model.  

Our results suggest that the impact of water levels on the Gulf spreads has an inverse U-
shape, which is substantially strengthened by spillover effects. We estimate that the optimal 
water level is 21 feet, with a 10-foot deviation from this level widening the spread by 4.55 cents 
per bushel, while a 20-foot deviation results in a 18.17-cent widening. The latter more accurately 
reflects recent extreme weather events. The influence of water on the spread decreases with the 
distance to the river, becoming insignificant for elevators placed beyond 100 miles from the river, 
with local price variations being essentially related to the domestic demand. The effects of water 
may be compensated by a strong internal demand, with a one-dollar increase in the processing 
value being associated with a 4.36-cent per bushel reduction in the Gulf spread. 
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The findings of this study carry implications in the context of climate change, which is 
expected to increase the frequency and severity of extreme weather events, including droughts 
and floods. By better understanding the relationship between the water levels and the Gulf spread, 
we provide a clearer picture on how the changing climate may impact the grain market from a 
transportation perspective.   

  



13 
 

References 

Amorim, R., Villarini, G., Veacth, W., & White, K. (2023). Reduced and more fragmented 
Mississippi River navigability by rising flow. Geophysical research letters, 50(19), 
e2023GL104619.  https://doi.org/10.1029/2023GL104619 

Beenstock, M., & Felsenstein, D. (2019). The econometric analysis of non-stationary spatial 
panel data. Springer International Publishing. 

Bivand, R. S., & Wong, D. W. (2018). Comparing implementations of global and local indicators 
of spatial association. Test, 27(3), 716-748. 

Chen, Z., & Cheng, J. (2024). Economic consequences of inland waterway disruptions in the 
Upper Mississippi River region in a changing climate. The Annals of Regional Science, 
73(2), 757–794. https://doi.org/10.1007/s00168-024-01283-0  

Chen, Z., Li, Z., & Cheng, J. (2024). The nonlinear impact of climate change on inland waterway 
transportation in the Upper Mississippi—Illinois River region. Environmental Research: 
Infrastructure and Sustainability, 4(3), 031001. https://doi.org/10.1088/2634-4505/ad5bfc  

Fahie, M. (2019). Impacts of the 2019 upper Mississippi River flooding on barge movements in 
the upper Midwest region. United States Coast Guard. 
https://www.dco.uscg.mil/Portals/9/Impacts%20of%202019%20UMR%20Flooding_Barge
%20Movements_Fahie_1.pdf 

Flores, I., & Janzen, J. (2023). Low water on the big river: The role of physical and economic 
distance in US soybean markets, Job Market Paper, Department of Agricultural and 
Consumer Economics, University of Illinois Urbana Champaign. 
https://drive.google.com/file/d/1jcVVHtmcHU9_YSd6YEIszCRFYIqplJvz/view?pli=1 
Retrieved July 14, 2024 

Golgher, A. B., & Voss, P. R. (2015). How to interpret the coefficients of spatial models: 
Spillovers, direct and indirect effects. Spatial Demography, 4(3), 175–205. 
https://doi.org/10.1007/s40980-015-0016-y  

Henderson, R., Caffarelli, P., & Gastelle, J. (2023). Transportation of U.S. Grains: A Modal 
Share Analysis 1978 - 2020 Update. U.S. Department of Agriculture, Agricultural 
Marketing Service. https://doi.org/10.9752/ts049.08-2023 

LeSage, J. P. (2014). What regional scientists need to know about spatial econometrics. Review 
of Regional Studies, 44(1). https://doi.org/10.52324/001c.8081  

Li, S. (2013a). Grain Transport on the Mississippi River and Spatial Corn Basis. [Doctoral 
dissertation, North Carolina State University]. 
https://repository.lib.ncsu.edu/server/api/core/bitstreams/5ca3d93c-8eb6-4057-9e77-
bef1365889cf/content 

Li, S. (2013b). Water Levels on the Mississippi River and Grain Transport Barge Rates. 

https://doi.org/10.1029/2023GL104619
https://doi.org/10.1007/s00168-024-01283-0
https://doi.org/10.1088/2634-4505/ad5bfc
https://www.dco.uscg.mil/Portals/9/Impacts%20of%202019%20UMR%20Flooding_Barge%20Movements_Fahie_1.pdf
https://www.dco.uscg.mil/Portals/9/Impacts%20of%202019%20UMR%20Flooding_Barge%20Movements_Fahie_1.pdf
https://drive.google.com/file/d/1jcVVHtmcHU9_YSd6YEIszCRFYIqplJvz/view?pli=1
https://doi.org/10.1007/s40980-015-0016-y
https://doi.org/10.9752/ts049.08-2023
https://repository.lib.ncsu.edu/server/api/core/bitstreams/5ca3d93c-8eb6-4057-9e77-bef1365889cf/content
https://repository.lib.ncsu.edu/server/api/core/bitstreams/5ca3d93c-8eb6-4057-9e77-bef1365889cf/content


14 
 

[Doctoral dissertation, North Carolina State University]. 
https://repository.lib.ncsu.edu/server/api/core/bitstreams/5ca3d93c-8eb6-4057-9e77-
bef1365889cf/content  

Koley, M., & Bera, A. K. (2023). To use, or not to use the spatial durbin model? – that is the 
question. Spatial Economic Analysis, 19(1), 30–56. 
https://doi.org/10.1080/17421772.2023.2256810 

Koley, M., & Bera, A. K. (2024). Specification Testing under General Nesting Spatial Model. 
Job market paper. 
https://drive.google.com/file/d/1jDAQEmczE7vlPPX1jKaYajD1VtmL4Zvh/view 

McNew, K. (1996). Spatial market integration: Definition, theory, and evidence. Agricultural and 
Resource Economics Review, 25(1), 1–11. https://doi.org/10.1017/s1068280500000010 

Steinbach, S., & Zhuang, X. (2023). US agricultural exports and the 2022 Mississippi River 
Drought. Agribusiness. https://doi.org/10.1002/agr.21880   

Stott, P. (2016). How climate change affects extreme weather events. Science, 352(6293), 1517-
1518. DOI: 10.1126/science.aaf7271 

Sytsma, T., & Wilson, W. (2021). Estimating the Demand for Railroad and Barge Movements of 
Corn in the Upper Mississippi River Valley. 10.22004/ag.econ.310903 

von Cramon-Taubadel, S., & Goodwin, B. K. (2021). Price transmission in agricultural markets. 
Annual Review of Resource Economics, 13(1), 65–84. https://doi.org/10.1146/annurev-
resource-100518-093938 

Yu, T. (Edward), Bessler, D. A., & Fuller, S. W. (2007). Price Dynamics in U.S. Grain and 
Freight Markets. Canadian Journal of Agricultural Economics/Revue Canadienne 
d’agroeconomie, 55(3), 381–397. https://doi.org/10.1111/j.1744-7976.2007.00098.x 

  

https://repository.lib.ncsu.edu/server/api/core/bitstreams/5ca3d93c-8eb6-4057-9e77-bef1365889cf/content
https://repository.lib.ncsu.edu/server/api/core/bitstreams/5ca3d93c-8eb6-4057-9e77-bef1365889cf/content
https://doi.org/10.1080/17421772.2023.2256810
https://drive.google.com/file/d/1jDAQEmczE7vlPPX1jKaYajD1VtmL4Zvh/view
https://doi.org/10.1017/s1068280500000010
https://doi.org/10.1002/agr.21880
https://doi.org/10.1126/science.aaf7271
http://dx.doi.org/10.22004/ag.econ.310903
https://doi.org/10.1146/annurev-resource-100518-093938
https://doi.org/10.1146/annurev-resource-100518-093938
https://doi.org/10.1111/j.1744-7976.2007.00098.x


15 
 

Figures 
Figure 1. Downbound grain barge movements by month 

 
Note: This figure displays the average monthly tonnage moved between Lock 15 and Lock 27 over different time 
periods for each lock. Lock numbers increase from north to south, with Lock 15 located farther north than Lock 27. 
Data covers 2013 to 2023 for Locks 15, 25, and 26, and 2007 to 2023 for Lock 27. The data is sourced from the 
USDA Downbound Barge Grain Movements report (https://agtransport.usda.gov/Barge/Downbound-Barge-Grain-
Movements-Tons-/n4pw-9ygw/about_data). 

  

https://agtransport.usda.gov/Barge/Downbound-Barge-Grain-Movements-Tons-/n4pw-9ygw/about_data
https://agtransport.usda.gov/Barge/Downbound-Barge-Grain-Movements-Tons-/n4pw-9ygw/about_data
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Figure 2. Map of price, water level locations, and rivers 

 

 
Note: This figure plots the locations of grain elevators (green dots), processors (dark red dots), water level stations 
(in blue triangles), and the Mississippi River, Illinois River, and Ohio River (blue lines) 
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Figure 3. Monthly water levels and downbound corn movement trends in St. Louis, 2012 - 2022 

 
Note: This figure plots the average monthly water levels and corn downbound corn movement over time for the 
Mississippi River System at St. Louis, for the years 2012 to 2022. The barge activity and water levels share a similar 
seasonality, except for the summer of 2019, characterized by a flood that shut down the river for over a month.  

Figure 4. Historical barge rates in St. Louis and Midwest diesel prices, 2012 - 2022 

Note: The orange curve represents weekly historical barge rates in St. Louis, expressed in percentage of the base 
tariff rate (measured in the left axis) representing a local benchmark rate and expressed in dollars per ton. The blue 
curve shows weekly historical Midwest diesel prices (measured in the right axis).   
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Figure 5. The Gulf spread difference (in cents) between 2012 (2019) [2022] October (June) 
[October] and benchmark years’ October (June) [October] 

 

 

 

 
 

Note: The three plots describe how the Gulf spread changed in each county during the most severe month of the 
drought (flood) years (2012, 2019, 2022), compared to the same month of the benchmark years (2013 to 2018 and 
2020 to 2021). Yellow denotes no change. If the color leans toward red (blue), it means the change is more positive 
(negative). 
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Figure 6. Kernel density plot of weekly Moran’s I  

 
Note: This dot plot shows the distribution of weekly Moran’s I values. The red dashed line indicates E(I). There are 
378 Moran’s I more positive than E(I) at 5% significance level.  
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Tables 
Table 1. Moran’s I test result on averaged Gulf spread over the sample period 
I p-value E(I) 𝑉𝑎𝑟(𝐼) 
0.305 3.432E-05 -0.029 0.007 
Note: The test examines the spatial autocorrelation among the regional Gulf spreads over the 389 weeks. I is the test 
value, p-value is the significance level, 𝐸(𝐼) is I’s expected value and 𝑉𝑎𝑟(𝐼) is the I’s variance calculated under 
randomization assumption.  
 
 
 
 
 
Table 2. Spatial Durbin Model Parameter Tests 
               Statistics p-values 
Joint test: 𝛽2 = 0, 𝜌 = 0 55.53 1.02E-10 
RS test for WX: 𝛽2 = 0 55.09 3.11E-11 
Adj. test for WX: 𝛽2 = 0, 𝜌 ≠ 0 55.74 5.97E-11 
RS test for WY: 𝜌 = 0 12.72 3.62E-04 
Adj. Test for WY: 𝜌 = 0, 𝛽2 ≠ 0    14.07 1.76E-04 
Note: The table presents five parameter tests for the SDM model 𝑌 =  𝜌𝑊𝑌 + 𝛹 + 𝛷 + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝜀. The 
model is estimated using Markov Chain Monte Carlo (MCMC) methods. The joint test examines whether the true 
model deviates from the OLS model. The RS tests are the Rao’s score tests to determine if the parameters 
significantly differ from zero. The Adj tests are adjusted Rao’s score tests that examine the significance of the 
parameters given the other parameters are significant.  
 
 
 
 
 

Table 3.Estimation result of SDM  

 Direct effect Indirect effect Total effect Estimate 
Water level 4.20E-03*** 1.45E-02*** 1.87E-02***  
Water level^2 -8.00E-05*** -3.74E-04*** -4.54E-04***  
Processing value 2.25E-02* 2.10E-02 4.36E-02***  
Truck costs to processor -1.92E-03*** -1.99E-04 -2.12E-03**  
Truck costs to river 2.00E-04*** -2.48E-04*** -4.80E-05**  
𝜌     0.70*** 
Note: This table presents the estimation result of SDM for the Gulf spread 𝑌 =  𝜌𝑊𝑌 + Ψα + Φµ + 𝑋𝛽1 +
𝑊𝑋𝛽2 + 𝜀 . The model is estimated using Markov Chain Monte Carlo (MCMC) methods. *(**)[***] denote 
10%(5%)[1%] significance levels.  
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Table 4. Estimation result of SDM in winter  

 Direct effect Indirect effect Total effect Estimate 
Water level 7.06E-03*** 8.95E-03*** 1.60E-02***  
Water level^2 -1.73E-04*** -3.04E-04*** -4.78E-04***  
Processing value -8.02E-02*** 8.96E-02*** 9.40E-03***  
Truck costs to processor -1.42E-03*** -3.44E-04 -1.76E-03**  
Truck costs to river 2.17E-04*** -2.73E-04*** -5.60E-05***  
𝜌     0.49*** 
Note: This table presents the estimation result of SDM for the winter (December to March) Gulf spread 𝑌 =
 𝜌𝑊𝑌 + Ψα + Φµ + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝜀 . The model is estimated using Markov Chain Monte Carlo (MCMC) 
methods. *(**)[***] denote 10%(5%)[1%] significance levels.  
 
 
 

Table 5. Estimation result of SDM for 50 – 100 miles  

 Direct effect Indirect effect Total effect Estimate 
Water level 4.30E-03*** 7.59E-03** 1.19E-02***  
Water level^2 -1.03E-04*** -2.80E-04** -3.83E-04***  
Processing value 9.39E-02*** -5.16E-02*** 4.23E-03***  
Truck costs to processor -2.40E-03*** -6.76E-03*** -9.16E-03***  
Truck costs to river 1.05E-04*** -3.40E-04 -4.10E-05***  
𝜌     0.66*** 
Note: This table presents the estimation result of SDM for elevators that are in the 50-100 mile distance band, while 
their distance to processors are still 50 miles. Gulf spread 𝑌 =  𝜌𝑊𝑌 + Ψα + Φµ + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝜀. The model is 
estimated using Markov Chain Monte Carlo (MCMC) methods. *(**)[***] denote 10%(5%)[1%] significance levels.  
 
 
 

Table 6. Estimation result of SDM for 100 – 150 miles  

 Direct effect Indirect effect Total effect Estimate 
Water level 1.23E-02*** -2.50E-03 9.80E-03  
Water level^2 -2.98E-04*** -2.20E-05 -3.20E-04  
Processing value 8.14E-02*** -4.22E-02** 3.92E-02***  
Truck costs to processor -2.77E-02*** -7.37E-02*** -1.01E-01***  
Truck costs to river 1.15E-04** 2.36E-03*** 2.48E-03***  
𝜌     0.57*** 
Note: This table presents the estimation result of SDM for elevators that are in the 100-150 mile distance band, 
while their distance to processors are still 50 miles. Gulf spread 𝑌 =  𝜌𝑊𝑌 + Ψα + Φµ + 𝑋𝛽1 + 𝑊𝑋𝛽2 + 𝜀. The 
model is estimated using Markov Chain Monte Carlo (MCMC) methods. *(**)[***] denote 10%(5%)[1%] 
significance levels.   
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Appendix A 
Figure A. Corn production map, 2022 

 
Note: Source: USDA 
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Appendix B 
Figure B. Upper Mississippi River Locks system. 

 

Note: This figure shows the locks and dams of the Mississippi River and the Illinois River from the Upper 
Mississippi River system, retrieved from: 
https://upload.wikimedia.org/wikipedia/commons/0/09/Upper_Mississippi_Lock_and_dams.jpeg 

https://upload.wikimedia.org/wikipedia/commons/0/09/Upper_Mississippi_Lock_and_dams.jpeg
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Appendix C 
Table C. Information of water gages and summary statistics of water level 
River Gage Longitude Latitude WL Mean (ft) WL Min (ft) WL Max (ft) WL St.Dev. WL Skew. 
Illinois Marseilles -88.7171 41.3270 12.99 10.72 21.84 1.64 2.09 
 Kingston Mines -89.7773 40.5534 9.38 2.15 24.68 4.53 0.56 
 Valley City -90.6431 39.7032 8.07 1.92 25.23 4.39 0.88 
Ohio Old Shawneetown -88.1397 37.7255 27.27 15.38 50.43 8.11 0.69 
Mississippi Wabasha -92.0369 44.3872 7.78 6.88 15.15 1.13 3.23 
 Winona -91.6375 44.0556 6.46 5.36 17.01 1.54 3.38 
 La Crosse -91.2589 43.8017 8.47 4.65 32.50 7.50 2.70 
 Lansing -91.2131 43.3603 8.54 5.89 17.21 1.19 3.75 
 Dubuque -90.6528 42.4993 9.59 7.16 21.74 2.20 2.12 
 Lock 12 -90.4211 42.2728 7.69 3.95 19.32 2.65 1.21 
 Camanche -90.2511 41.7814 10.74 3.79 20.40 1.90 1.69 
 Lock 14 -90.4031 41.5744 5.60 4.15 13.52 1.52 2.10 
 Lock 15 -90.5662 41.5170 7.51 3.57 19.14 2.83 1.30 
 Fairport -90.8936 41.4378 11.00 9.89 19.71 1.39 4.04 
 Lock 16 -91.0128 41.4255 6.41 2.81 19.17 2.99 1.68 
 Muscatine -91.0552 41.3909 8.60 5.62 20.48 2.70 1.89 
 Lock 17 -91.0556 41.1914 7.53 2.55 20.52 3.53 1.05 
 Keithsburg -90.9594 41.1061 8.78 5.32 18.83 2.63 1.15 
 Lock 18 -91.0225 40.8814 4.73 0.78 16.09 3.04 1.17 
 Burlington -91.0917 40.7981 10.58 7.43 20.30 2.57 1.25 
 Lock 19 -91.3742 40.3975 6.08 2.31 19.81 3.45 1.56 
 Lock 20 -91.5146 40.1439 6.74 2.41 20.24 3.49 1.36 
 Hannibal -91.3544 39.7119 12.22 10.01 23.73 2.30 2.59 
 Lock 22 -91.2489 39.6362 8.01 3.89 22.93 3.70 1.55 
  St. Louis -90.1798 38.6123 9.38 -4.09 40.03 9.15 0.78 

Note: This table shows the locations of each water level gage and the mean, minimum, maximum, standard deviation and skewness of water level recorded at 
each gage, 2012 – 2022, excluding December, January, February, and March 


