### Managing Risks with Cover Crops A Case Study of the Most Profitable Illinois Farms Using Cover Crops

# P) C M

**Precision Conservation Management** 

### Laura Gentry IL Corn Growers Association



College of Agricultural, Consumer & Environmental Sciences

### Gary Schnitkey University of Illinois

White the Here

## Topics

- 1. In depth study of cover crops in PCM
- 2. Why cover crops?
- 3. Cover crops: Corn-to-soybeans
- 4. Incentive payments for cover crops
- 5. Cover crops: Soybeans-to-corn
- 6. Summary



# In Depth Study of Cover Crops







### Soybean, High Soil Productivity Rating (SPR) 2015-23 Average Values

|                                                                                                                                        |                                                                                                                        |                                        | Overwintering  | Winter Terminal | No Cover Crop |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|-----------------|---------------|
|                                                                                                                                        |                                                                                                                        | # Fields                               | 1,340          | 44              | 4,554         |
|                                                                                                                                        | Yield Per Acre<br>Soil Productivity Rating                                                                             |                                        | 68             | 71              | 70            |
|                                                                                                                                        |                                                                                                                        |                                        | 139            | 139             | 140           |
| *Eartili                                                                                                                               | izara posticidas                                                                                                       | Gross Revenue                          | \$723          | \$762           | \$747         |
| seed, c                                                                                                                                | ilizers, pesticides,<br>cover crop seed,<br>g, storage, and<br>insurance.                                              | <b>Cover Crop Seed</b>                 | \$14           | \$16            | \$0           |
| drying, st<br>crop insu<br>**tillage,<br>application<br>planting,<br>planting,<br>sprint/in-<br>fertilizer a<br>harvestinn<br>hauling. |                                                                                                                        | Total Direct Costs*                    | \$180          | \$180           | \$173         |
|                                                                                                                                        | ge, fall fertilizer<br>ation, spraying,<br>ng, cover crop<br>ng,<br>/in-season<br>zer application,<br>sting, and grain | <b>Cover Crop Planting</b>             | \$11           | \$16            | <b>\$0</b>    |
|                                                                                                                                        |                                                                                                                        | <b>Other Power Costs**</b>             | \$95           | \$75            | \$89          |
|                                                                                                                                        |                                                                                                                        | Total Power Costs                      | \$106          | \$91            | \$89          |
|                                                                                                                                        |                                                                                                                        | Overhead Costs                         | \$33           | \$33            | \$33          |
|                                                                                                                                        |                                                                                                                        | Total Non-land Costs                   | \$318          | \$304           | \$295         |
|                                                                                                                                        | g.                                                                                                                     | <b>Operator &amp; Land Return</b>      | \$375 to \$425 | \$435 to \$485  | \$452         |
|                                                                                                                                        | Est                                                                                                                    | imated Soil Loss (Tons/A)              | 1.24           | 1.12            | 2.03          |
|                                                                                                                                        | <b>GHG Emiss</b>                                                                                                       | ions (Metric Tons CO <sub>2</sub> e/A) | -0.42          | -0.42           | -0.02         |

#### 



## **Cover Crop Evaluation Research**

### Each year

- Completed a summary of cover crops compared to no cover crops
- This study goes into greater detail to identify the most promising and profitable cover crop strategies.

### Approach

- Conduct more detailed analysis of PCM data.
- Identified and talked to farmers with most profitable cover crop fields.



### www.precisionconservation.org/managing-risks-with-cover-crops/





100 million

Growers Association and the Illinois Soybean Association



### d in the budget below.

s from PCM, Central Illinois, d, 2019-2022 Average Values

| No-till<br>No Cover Crops <sup>2</sup> | One-pass<br>No Cover Crone3 |
|----------------------------------------|-----------------------------|
| 67.8                                   | 68.0                        |
| \$783                                  | \$786                       |
| \$189                                  | \$174                       |
| \$75                                   | \$87                        |
| \$33                                   | \$33                        |
| \$0                                    | \$0                         |
| 5297                                   |                             |



Patience is needed on your first attempts with cover crops, but long-term soil conservation and Carbon sector

# Why Cover Crops?







### Learn more at www.precisionconservation.org





Data Security Guarantee -Individual farm data is protected [not shared] unless the farmer chooses to do so

Read More...

improvements in conservation practices

Read More..

Read More..

soil health

Read More..

## **Illinois Nutrient Loss Reduction Strategy**



### Goal: 45% Reduction in Total N & Total P Losses by 2035

# **Interim:** 15% Reduction in NO<sub>3</sub>-N and 25% Reduction in Total P by 2025

https://epa.illinois.gov/topics/water-quality/watershed-management/excess-nutrients/nutrient-loss-reduction-strategy.html







## Science Assessment

Mark B. David, Gregory F. McIsaac, Gary D. Schnitkey, George F. Czapar, and Corey A. Mitchell

## Determined

- NO<sub>3</sub>-N and P losses for the state of IL during the baseline period
- Regional loadings
- Management practice effectiveness & scenarios





## Science Assessment

Mark B. David, Gregory F. McIsaac, Gary D. Schnitkey, George F. Czapar, and Corey A. Mitchell

### Determined

- NO<sub>3</sub>-N and P losses for the state of IL during the baseline period
- Regional loadings
- Management practice effectiveness & scenarios



Figure 3.17. Combined MLRAs shown with HUC8s overlaid.

Figure 3.1. The eight major river systems used in estimating state nutrient loads. Note that gaging stations are upriver from the state boundary, so the estimated area is smaller.

#### 





### **1980-1996 BASELINE:** 404M lb NO3-N/yr; 34M lb P/yr

## Science Assessment

Table 3.11. Example statewide results for nitrate-nitrogen reductions, with shading to represent in-field, edge-of-field, land use, and point source practices or scenarios.

| Practice/scenario                                                                                      | Nitrate-N<br>reduction per<br>acre (percent) | Nitrate-N<br>reduced<br>(million lb) | Nitrate-N reduc-<br>tion from base-<br>line (percent) | Cost (\$/lb<br>removed) |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------------------|-------------------------|
| Reducing N rate from background<br>to MRTN on 10 percent of acres                                      | 10                                           | 2.3                                  | 0.6                                                   | -4.25                   |
| Nitrification inhibitor with all<br>fall-applied fertilizer on tile-drained<br>corn acres              | 10                                           | 4.3                                  | 1                                                     | 2.33                    |
| Split application of 50 percent fall<br>and 50 percent spring on tile-<br>drained corn acres           | 7.5-10                                       | 13                                   | 3.1                                                   | 6.22                    |
| Spring-only application on tile-<br>drained corn acres                                                 | 15-20                                        | 26                                   | 6.4                                                   | 3.17                    |
| Split application of 40 percent fall,<br>10 percent pre-plant, and 50 per-<br>cent side dress          | 15-20                                        | 26                                   | 6.4                                                   |                         |
| Cover crops on all corn/soybean tile-drained acres                                                     | 30                                           | 84                                   | 20.5                                                  | 3.21                    |
| Cover crops on all corn/soybean<br>non-tiled acres                                                     | 30                                           | 33                                   | 7.9                                                   | 11.02                   |
| Bioreactors on 50 percent of tile-<br>drained land                                                     | 25                                           | 35                                   | 8.5                                                   | 2.21                    |
| Wetlands on 35 percent of tile-<br>drained land                                                        | 50                                           | 49                                   | 11.9                                                  | 4.05                    |
| Buffers on all applicable crop land<br>(reduction only for water that inter-<br>acts with active area) | 90                                           | 36                                   | 8.7                                                   | 1.63                    |
| Perennial/energy crops equal to<br>pasture/hay acreage from 1987                                       | 90                                           | 10                                   | 2.6                                                   | 9.34                    |
| Perennial/energy crops on 10 per-<br>cent of tile-drained land                                         | 90                                           | 25                                   | 6.1                                                   | 3.18                    |
| Point source reduction to 10 mg/L                                                                      |                                              | 14                                   | 3.4                                                   | 3.3                     |

### For Each Practice, Load Reductions:

- Per acre
- Statewide
- Percent of Baseline
- Implementation cost (\$/lb removed)



In Field

**Edge-of Field** 

/End-of-Pipe

Land Use Change



### **ADVANTAGES OF COVER CROPPING**



**I**ILLINOIS



# Cover Crops Corn-to-Soybeans









### **Specifications**

- **1. Cover-crop species**
- 2. Timing of cover-crop planting

3. Timing of cover-crop termination and planting of crop



## **Species of Choice: Cereal Rye**

- 1. Generally low cost choice of cover crop
- 2. Relatively easy to establish with timing in fall being less of a concern
- 3. Consistently overwinters

## Planting timing and method

### **Plant after corn harvest**

### **Method varies**

- Broadcast with dry fertilizer Low cost but poorer



farmdoc

- Broadcast and then light tillage pass with vertical tillage Moderate costs, better establishment
- Drill or plant

High costs, but good establishment, more labor/time intensive

- Attachments to combine

Eliminates tillage pass, generally lower costs, slows/complicates harvest

**I** ILLINOIS



## **Termination of cover crops**

- Plant soybeans early!!
- Termination:
  - Before planting (Reduces risk of cover crop competing with soybeans, decreases chance of eliminating herbicide passes)
  - After planting (Increases risk of cover crop competing with soybeans, increases chance of eliminating herbicide passes)

Reduction in herbicide costs and increase in weed control is a benefit of planting cover crops



## Note on risks

- In PCM data, lower average yields with cover crops may occur (if not following standard system)
- But cover crops do not increase low tail-end risks



### Yields for Soybean Fields With and Without Cover Crops, High-Productivity Soils in East Central Illinois, Precision Conservation Management<sup>1</sup>

|         | Average of All Fields |            |      | Average of 59 | % Lowest Yie | ding       |      |
|---------|-----------------------|------------|------|---------------|--------------|------------|------|
|         | Without With          |            |      | -             | Without      | With       |      |
| Year    | Cover Crop            | Cover Crop | Diff |               | Cover Crop   | Cover Crop | Diff |
| 2017    | 63                    | 65         | -2   |               | 22           | 24         | -2   |
| 2018    | 72                    | 68         | 4    |               | 26           | 23         | 3    |
| 2019    | 60                    | 59         | 1    |               | 18           | 19         | -1   |
| 2020    | 65                    | 63         | 2    |               | 22           | 20         | 1    |
| 2021    | 71                    | 69         | 2    |               | 25           | 22         | 2    |
| 2022    | 69                    | 68         | 1    |               | 25           | 27         | -2   |
| Average | 67                    | 65         | 2    |               | 23           | 22         | 1    |

<sup>1</sup>Includes over-wintering cover crops. No over-wintering species are included in the analysis.

farmdoc Daily, October 3, 2023

### **Reduced Risk Cover Crop System for Soybeans**



### Per Acre Soybean Results from Precision Conservation Management, Central Illinois, High-Productivity Farmland, Average from 2019 to 2022.

|                               | Cover Crops | No cover crops | No cover crops   |  |
|-------------------------------|-------------|----------------|------------------|--|
|                               | No-till     | No-till        | One Tillage Pass |  |
| Yield (bushels/acre)          | 67.3        | 67.8           | 68.0             |  |
| Gross Revenue (\$ per acre)   | \$783       | \$783          | \$786            |  |
| Direct costs <sup>4</sup>     | 177         | 189            | 174              |  |
| Power costs <sup>5</sup>      | 73          | 75             | 87               |  |
| Overhead costs                | 33          | 33             | 33               |  |
| Cover crop costs <sup>6</sup> | 25          | 0              | 0                |  |
| Total non-land costs          | \$308       | \$297          | \$294            |  |
| Operator and Land Return      | \$475       | \$486          | \$492            |  |





Precision Conservation Management

#### farmdocdally

#### **I**ILLINOIS

### Summary findings (Cover Crop before Soybean)

- There is no statistical difference in soybean yield between fields with cover crops and those without.
- Lower direct costs in cover crop systems generally come from reduced herbicide cost, and occasionally lower fertilizer costs.
- Yield differences and reduced herbicide costs do not entirely offset the cost of cover crop seed and planting.



## Summary findings

Interviewed farmers indicated that revenue from another source should be used to cover the costs of cover crops. These include:

- EQIP and CSP
- Pay-for-practice programs like PCM
- Carbon markets







## **PCM and Incentives for Farmers**

**I** ILLINOIS

### **Types of cover crop funding** Public

Federal: USDA-NRCS USDA Partnership for Climate-Smart Commodities State: Fall Covers for Spring Savings & Partners for Conservation Private Pay for practice or carbon/ecosystem service markets

### **Combination funding**





#### Clay Bess **PCM Operation Manager** cbess@precisionconservation.org 309-445-0278

### Lou Liva

**PCM Specialist** Rock Island, Mercer, Knox, and Henry Counties lliva@precisionconservation.org 309-391-2346



#### Andrea Kuehner

**PCM Specialist** Monroe, St. Clair, Madison, Clinton, and Washington Counties akohring@precisionconservation.org 309-319-8809

#### **Darren Cudaback**

PCM Specialist Select counties in Nebraska dcudaback@precisionconservation.org 308-216-1153



#### Andrew Hiser

PCM Specialist Christian, Macoupin, Sangamon Counties ahister@precisionconservation.org 309-307-7520



#### Chris Stewart

**PCM Specialist** Select counties in Kentucky cstewart@precisionconservation.org 270-205-2258



#### Alexa Rutherford

#### **PCM Specialist**

Ogle, Lee, DeKalb, Boone, and Winnebago Counties arutherford@precisionconservation.org 309-336-9779

#### Aidan Walton

#### **PCM Specialist**

Ford, Livingston, Logan, McLean, Tazwell and **Woodford Counties** awalton@precisionconservation.org 309-391-2345

#### Jonah Cooley

PCM Specialist Piatt, DeWitt, and Champaign Counties jcooley@precisionconservation.org 309-831-7558

#### Jacob Gard

**PCM Specialist** Coles, Douglas, Edgar, and Vermilion Counties jgard@precisionconservation.org 309-200-6180



Leyton Brown

#### **PCM Specialist** Champaign and Vermilion Counties lbrown@precisionconservation.org 309-307-7515

PCM specific **Cover Crop RCPP** funding available in 20 Illinois counties



**United States Department of Agriculture** Natural Resources Conservation Service

### **Benefits**

Illinois farmers enrolled in PCM are eligible to receive up to \$35 per acre for the conservation practices listed below. There is no cap on number of acres per farmer, and practice payments are stackable!

| Cover Crops                                        | No-Till/Strip Till                                 | MRTN/10% N Reduction           |
|----------------------------------------------------|----------------------------------------------------|--------------------------------|
| \$15/acre 1 <sup>st</sup> and 2 <sup>nd</sup> year | \$10/acre 1 <sup>st</sup> and 2 <sup>nd</sup> year | \$10/acre 1 <sup>st</sup> year |
| \$10/acre 3 <sup>rd</sup> year and beyond          | \$5/acre 3 <sup>rd</sup> year and beyond           |                                |



Precision Conservation Management





United States Department of Agriculture



ILLINOIS

## **Incentive Programs**

- Transition Incentive Payments (TIP)
- NEW cover crop acres
  - \$25/a Year 1
  - \$15/a Year 2
  - \$10/a Year 3
  - Can enroll up to 1000 acres/farmer
  - Look back period for eligibility is 1 year
     (i.e. if field was not cover cropped previous year, it is eligible as a "new" field/acre)
- Signing Incentive Payments (SIP)
- OLD cover crop acres
  - \$2/a payment for 1 year (up to 600 acres)
  - Access to DTN's Digital Marketplace connecting you to other ecosystem service opportunities







## Incentive/Cost-Share Programs through PCM



Precision Conservation Management

farmdoc

### **PCM RCPP – Cover Crop Cost-Share**

- \$40 to \$60/acre in 20 counties in IL and 10 in KY
- Based on ranking criteria

### Illinois Soybean Association – TNC Cover Crop Incentive

- \$10/acre (200-acre cap per farmer)
- For new acres only
- Stackable



## Cover Crops Soybeans-to-Corn



P C M



## Why More Challenging?

### Agronomics make cover crops more difficult

- Corn is less tolerant of stress compared to soybeans
- Cover crops sequester nitrogen, needed by corn

# Timing of cover crop planting and termination becomes more difficult

### Costs are more difficult to control



Three systems show promise
1. Clovers – seed before harvest
2. Cereal rye – after harvest
3. Winter terminal cover crops





## Clovers

Seed before soybean harvest generally in late September (need to have time for clovers to establish)

Aerial seeding method

Advantage: Clovers sequester nitrogen which may be available for corn

**Disadvantage:** Higher costs: 1) cover crop seed and 2) seeding method





## **Cereal Rye**

Plant after soybeans are harvested using low seeding rates (strip till may have advantages)

Terminate early before corn planting

**Advantage:** Lower cover crop costs

**Disadvantages:** Reliance on cereal rye, concerns with successive planting of grasses



## **Terminal Cover Crop**

Cover crop planted in fall that then is terminated by frost (e.g., oats, turnips)

Plant after soybean harvest

Advantage: Does not require special termination in spring

**Disadvantage:** No spring growth with its advantages (i.e., sequestration of nitrates)



#### Per Acre Corn Results from PCM, Central Illinois, High-Productivity Farmland, 2019-2022 Average Values

|                           | Winter<br>Terminal<br>Cover Crops | Overwintering<br>Cover Crops | One-pass<br>No Cover Crops |
|---------------------------|-----------------------------------|------------------------------|----------------------------|
| Yield (bu/a)              | 218                               | 215                          | 217                        |
| GROSS REVENUE             | \$1,087                           | \$1,066                      | \$1,070                    |
| Direct costs              | \$436                             | \$451                        | \$441                      |
| Power costs               | \$116                             | \$114                        | \$115                      |
| Overhead costs            | \$40                              | \$40                         | \$40                       |
| Cover crop costs          | \$30                              | \$26                         | \$0                        |
| TOTAL NON-LAND COSTS      | \$622                             | \$631                        | \$596                      |
| OPERATOR &<br>LAND RETURN | \$465                             | \$435                        | \$474                      |

Winter Terminal Cover Crops

Fields that had cover crops that terminate after the fall.

### **Overwintering Cover Crops**

Fields that had cover crops that overwintered.

### **One-pass No Cover Crops**

Fields with one-pass of a tillage implement and no cover crops.

#### **I** ILLINOIS



### Yields for Corn Fields With and Without Cover Crops, High-Productivity Soils in East Central Illinois, Precision Conservation Management<sup>1</sup>

|         |            |               |      | Average of 5% Lowest Yielding |
|---------|------------|---------------|------|-------------------------------|
|         | Average    | of All Fields |      | Fields                        |
|         | Without    | With          |      | Without With                  |
| Year    | Cover Crop | Cover Crop    | Diff | Cover Crop Cover Crop Diff    |
|         |            |               |      |                               |
| 2017    | 213        | 206           | 7    | 143 160 -17                   |
| 2018    | 227        | 207           | 20   | 163 156 7                     |
| 2019    | 197        | 194           | 3    | 121 144 -23                   |
| 2020    | 209        | 200           | 9    | <b>1</b> 39 <b>1</b> 53 -14   |
| 2021    | 218        | 208           | 10   | 150 169 -19                   |
| 2022    | 226        | 221           | 5    | 168 170 -2                    |
| Average | 215        | 206           | 9    | 147 159 -12                   |
|         |            |               |      |                               |

<sup>1</sup>Includes over-wintering cover crops. None over-wintering species are not included in the analysis.

farmdoc Daily, October 3, 2023







## Tips for those New to Cover Crops

- Plant cover crops before soybean
- Plant cereal rye after corn harvest. Broadcast cereal rye with fertilizer
- Plant soybeans "early" in spring, terminating cover crop near (before) planting



Farmer should implement cover crops to get ahead of fertilizer regulations. Try it on a small number of acres and build a long-term program that works for your farm. Steve Staker Mercer County



Patience is needed on your first attempts with cover crops, but long-term soil conservation and carbon sequestration is worth the effort.

> Jason Lay Mclean County





## farmdoc Sponsors

# TIAA Center for Farmland Research

# **COBANK COMPER** FINANCIAL **GREEVA** griscience









## farmdoc Educational Partners



### College of Agricultural, Consumer & Environmental Sciences

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

### Department of Agricultural & Consumer Economics

### Extension



Gardner Agriculture Policy Program



### **2024 Illinois Farm Economics Summit**

### Thank You for joining us!

### Visit us at **farmdocDAILY** .Illinois.edu

Subscribe for Latest News Updates





### College of Agricultural, Consumer & Environmental Sciences

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN



For the webinar archives and 5-minute farmdoc Subscribe to our channel YouTube.com/@farmdoc

